# some ideas by u/DaVinci103 # MIT License, Copyright (c) 2024 Marvin Borner :import std/Logic . :import std/Combinator . :import std/Math/Rational . :import std/Number N # converts a balanced ternary number to a real number number→real [[number→rational 1]] ⧗ Number → Real :test (number→real (+5)) ((+5.0r)) approx-eq? [[[eq? (1 2) (0 2)]]] ⧗ Number → Real → Real → Boolean # TODO: bigger value (higher performance first!) …≈?… approx-eq? (+1000) # TODO: this value could turn the whole equation to garbage (e.g. in div x ε) ε (+0.000000000000000000000001) # extends φ combinator by canceling further reductions when approximator hits 0 φ-lim [[[[[N.=?0 ε (4 (3 0) (2 0))] N.--0]]]] # extends b combinator by canceling further reductions when approximator hits 0 b-lim [[[N.=?0 ε (2 (1 N.--0))]]] # adds two real numbers add φ-lim add ⧗ Real → Real → Real …+… add # subtracts two real numbers sub φ-lim sub ⧗ Real → Real → Real …-… sub # multiplies two real numbers mul φ-lim mul ⧗ Real → Real → Real …⋅… mul # divides two real numbers div φ-lim div ⧗ Real → Real → Real …/… div # negates a real number negate b-lim negate ⧗ Real → Real -‣ negate # inverts a real number invert b-lim invert ⧗ Real → Real ~‣ invert # finds smallest equivalent representation of a real number compress b-lim compress ⧗ Real → Real %‣ compress # --- :import std/List . # for debugging …#… φ-lim cons # real^number pow-n […!!… (iterate (mul 0) (+1.0r))] ⧗ Real → Number → Real exp [y [[[[rec]]]] (+1) (+1.0r) (+1.0r)] rec (1 / 0) + (3 N.++2 (1 ⋅ 4) (0 ⋅ (number→real 2))) ln [y [[[rec]]] (+1) 0] rec (N.=²?1 -‣ [0] (0 / (number→real 1))) + (2 N.++1 (3 ⋅ 0)) # power function pow [[exp (0 ⋅ (ln 1))]] ⧗ Real → Real → Real …**… pow # :test (((+2.0r) ** (+3.0r)) ≈? (+8.0r)) (true)