# MIT License, Copyright (c) 2022 Marvin Borner # According to works of T.Æ. Mogensen :import std/Combinator . :import std/Pair . # checks whether balanced ternary number is zero zero? [0 T [F] [F] I] :test zero? +0 = T :test zero? -1 = F :test zero? +1 = F :test zero? +42 = F trit-neg [[[2]]] trit-pos [[[1]]] trit-zero [[[0]]] # shifts a negative trit into a balanced ternary number up-neg [[[[[2 (4 3 2 1 0)]]]]] :test up-neg +0 = -1 :test up-neg -1 = -4 :test up-neg +42 = +125 # shifts a positive trit into a balanced ternary number up-pos [[[[[1 (4 3 2 1 0)]]]]] :test up-pos +0 = +1 :test up-pos -1 = -2 :test up-pos +42 = +127 # shifts a zero trit into a balanced ternary number up-zero [[[[[0 (4 3 2 1 0)]]]]] :test up-zero +0 = [[[[0 3]]]] :test up-zero +1 = +3 :test up-zero +42 = +126 # shifts a specified trit into a balanced ternary number up [[[[[[5 2 1 0 (4 3 2 1 0)]]]]]] :test up trit-neg +42 = up-neg +42 :test up trit-pos +42 = up-pos +42 :test up trit-zero +42 = up-zero +42 # negates a balanced ternary number negate [[[[[4 3 1 2 0]]]]] :test negate +0 = +0 :test negate -1 = +1 :test negate +42 = -42 # extracts least significant trit from balanced ternary numbers lst [0 trit-zero [trit-neg] [trit-pos] [trit-zero]] :test lst +0 = trit-zero :test lst -1 = trit-neg :test lst +1 = trit-pos :test lst +42 = trit-zero # converts the normal balanced ternary representation into abstract # -> the abstract representation is used in add/sub/mul _abs-neg [[[[[2 4]]]]] _abs-pos [[[[[1 4]]]]] _abs-zero [[[[[0 4]]]]] abstractify [0 [[[[3]]]] _abs-neg _abs-pos _abs-zero] :test abstractify -3 = [[[[0 [[[[2 [[[[3]]]]]]]]]]]] :test abstractify +0 = [[[[3]]]] :test abstractify +3 = [[[[0 [[[[1 [[[[3]]]]]]]]]]]] # converts the abstracted balanced ternary representation back to normal # using Y/ω to solve recursion _normalize [[0 +0 [up-neg ([3 3 0] 0)] [up-pos ([3 3 0] 0)] [up-zero ([3 3 0] 0)]]] normalize ω _normalize :test normalize [[[[3]]]] = +0 :test normalize (abstractify +42) = +42 :test normalize (abstractify -42) = -42 # checks whether two balanced ternary numbers are equal # -> removes leading 0s! _eq-z [zero? (normalize 0)] _eq-neg [[0 F [2 0] [F] [F]]] _eq-pos [[0 F [F] [2 0] [F]]] _eq-zero [[0 (1 0) [F] [F] [2 0]]] _eq-abs [0 _eq-z _eq-neg _eq-pos _eq-zero] eq? [[_eq-abs 1 (abstractify 0)]] :test eq? -42 -42 = T :test eq? -1 -1 = T :test eq? -1 +0 = F :test eq? +0 +0 = T :test eq? +1 +0 = F :test eq? +1 +1 = T :test eq? +42 +42 = T :test eq? [[[[(1 (0 (0 (0 (0 3)))))]]]] +1 = T # strips leading 0s from balanced ternary number _strip-z pair +0 T _strip-neg [0 [[pair (up-neg 1) F]]] _strip-pos [0 [[pair (up-pos 1) F]]] _strip-zero [0 [[pair (0 +0 (up-zero 1)) 0]]] strip [fst (0 _strip-z _strip-neg _strip-pos _strip-zero)] :test strip [[[[0 3]]]] = +0 :test strip [[[[2 (0 (0 (0 (0 3))))]]]] = -1 :test strip +42 = +42 # I believe Mogensen's Paper has an error in its succ/pred definitions. # They use 3 abstractions in the _inc* functions, also we use switched +/0 # in comparison to their implementation, yet the order of neg/pos/zero is # the same. Something's weird. # adds +1 to a balanced ternary number (can introduce leading 0s) _inc-z pair +0 +1 _inc-neg [0 [[pair (up-neg 1) (up-zero 1)]]] _inc-zero [0 [[pair (up-zero 1) (up-pos 1)]]] _inc-pos [0 [[pair (up-pos 1) (up-neg 0)]]] inc [snd (0 _inc-z _inc-neg _inc-pos _inc-zero)] sinc [strip (inc 0)] :test eq? (inc -42) -41 = T :test eq? (inc -1) +0 = T :test eq? (inc +0) +1 = T :test eq? (inc (inc (inc (inc (inc +0))))) +5 = T :test eq? (inc +42) +43 = T # subs +1 from a balanced ternary number (can introduce leading 0s) _dec-z pair +0 -1 _dec-neg [0 [[pair (up-neg 1) (up-pos 0)]]] _dec-zero [0 [[pair (up-zero 1) (up-neg 1)]]] _dec-pos [0 [[pair (up-pos 1) (up-zero 1)]]] dec [snd (0 _dec-z _dec-neg _dec-pos _dec-zero)] sdec [strip (dec 0)] :test dec -42 = -43 :test dec +0 = -1 :test sdec (dec (dec (dec (dec +5)))) = +0 :test sdec +1 = +0 :test dec +42 = +41 # adds two balanced ternary numbers (can introduce leading 0s) _add-c [[1 0 trit-zero]] _add-b-neg2 [1 (up-zero (3 0 trit-neg)) (up-neg (3 0 trit-zero)) (up-pos (3 0 trit-neg))] _add-b-neg [1 (up-pos (3 0 trit-neg)) (up-zero (3 0 trit-zero)) (up-neg (3 0 trit-zero))] _add-b-zero [up 1 (3 0 trit-zero)] _add-b-pos [1 (up-zero (3 0 trit-zero)) (up-neg (3 0 trit-pos)) (up-pos (3 0 trit-zero))] _add-b-pos2 [1 (up-pos (3 0 trit-zero)) (up-zero (3 0 trit-pos)) (up-neg (3 0 trit-pos))] _add-a-neg [[[1 (_add-b-neg 1) _add-b-neg2 _add-b-zero _add-b-neg]]] _add-a-pos [[[1 (_add-b-pos 1) _add-b-zero _add-b-pos2 _add-b-pos]]] _add-a-zero [[[1 (_add-b-zero 1) _add-b-neg _add-b-pos _add-b-zero]]] _add-z [[0 (dec (normalize 1)) (inc (normalize 1)) (normalize 1)]] _add-abs [_add-c (0 _add-z _add-a-neg _add-a-pos _add-a-zero)] add [[_add-abs 1 (abstractify 0)]] sadd [[strip (add 1 0)]] :test eq? (add -42 -1) -43 = T :test eq? (add -5 +6) +1 = T :test eq? (add -1 +0) -1 = T :test eq? (add +0 +0) +0 = T :test eq? (add +1 +2) +3 = T :test eq? (add +42 +1) +43 = T # subs two balanced ternary numbers (can introduce leading 0s) sub [[add 1 (negate 0)]] ssub [[strip (sub 1 0)]] :test eq? (sub -42 -1) -41 = T :test eq? (sub -5 +6) -11 = T :test eq? (sub -1 +0) -1 = T :test eq? (sub +0 +0) +0 = T :test eq? (sub +1 +2) -1 = T :test eq? (sub +42 +1) +41 = T # muls two balanced ternary numbers (can introduce leading 0s) _mul-neg [sub (up-zero 0) 1] _mul-pos [add (up-zero 0) 1] _mul-zero [up-zero 0] mul [[1 +0 _mul-neg _mul-pos _mul-zero]] smul [[strip (mul 1 0)]] :test eq? (mul +42 +0) +0 = T :test eq? (mul -1 +42) -42 = T :test eq? (mul +3 +11) +33 = T :test eq? (mul +42 -4) -168 = T