# MIT License, Copyright (c) 2022 Marvin Borner # with implicit help from Justine Tunney and John Tromp # classic Church style numerals :import std/Logic . :import std/Combinator . :import std/Pair . # id for church numerals # generic base for dec/fib/fac/etc. uid [[[extract (2 inc init)]]] ⧗ Unary → Unary extract [0 [0]] inc [[0 (1 3)]] init [0 1] :test (uid (+0u)) ((+0u)) :test (uid (+1u)) ((+1u)) :test (uid (+5u)) ((+5u)) # returns true if a unary number is zero zero? [0 [(+0u)] true] ⧗ Unary → Boolean =?‣ zero? :test (=?(+0u)) (true) :test (=?(+42u)) (false) # adds 1 to a unary number inc [[[1 (2 1 0)]]] ⧗ Unary → Unary ++‣ inc :test (++(+0u)) ((+1u)) :test (++(+1u)) ((+2u)) :test (++(+42u)) ((+43u)) # subs 1 from a unary number dec [[[extract (2 inc const)]]] ⧗ Unary → Unary extract [0 [0]] inc [[0 (1 3)]] const [1] --‣ dec :test (--(+0u)) ((+0u)) :test (--(+1u)) ((+0u)) :test (--(+42u)) ((+41u)) # adds two unary numbers add [[[[3 1 (2 1 0)]]]] ⧗ Unary → Unary → Unary …+… add :test ((+0u) + (+2u)) ((+2u)) :test ((+5u) + (+3u)) ((+8u)) # subs two unary numbers sub [[0 dec 1]] ⧗ Unary → Unary → Unary …-… sub :test ((+2u) - (+2u)) ((+0u)) :test ((+5u) - (+3u)) ((+2u)) # returns true if number is less than or equal to other number leq? zero? ∘∘ sub ⧗ Unary → Unary → Boolean …≤?… leq? :test ((+1u) ≤? (+2u)) (true) :test ((+2u) ≤? (+2u)) (true) :test ((+3u) ≤? (+2u)) (false) # returns true if number is greater than or equal to other number geq? \leq? ⧗ Unary → Unary → Boolean …≥?… geq? :test ((+1u) ≥? (+2u)) (false) :test ((+2u) ≥? (+2u)) (true) :test ((+3u) ≥? (+2u)) (true) # returns true if number is greater than other number # larger numbers should be second argument (performance) gre? not! ∘∘ leq? ⧗ Unary → Unary → Boolean …>?… gre? :test ((+1u) >? (+2u)) (false) :test ((+2u) >? (+2u)) (false) :test ((+3u) >? (+2u)) (true) # returns true if number is less than other number # smaller numbers should be second argument (performance) les? \gre? ⧗ Unary → Unary → Boolean …b, -1 if a… compare # muls two unary numbers mul …∘… ⧗ Unary → Unary → Unary …⋅… mul :test ((+0u) ⋅ (+2u)) ((+0u)) :test ((+2u) ⋅ (+3u)) ((+6u)) # divs two unary numbers div [[[[3 [[0 1]] [1] (3 [3 [[0 1]] [3 (0 1)] [0]] 0)]]]] ⧗ Unary → Unary → Unary …/… div :test ((+8u) / (+4u)) ((+2u)) :test ((+2u) / (+1u)) ((+2u)) :test ((+2u) / (+2u)) ((+1u)) :test ((+2u) / (+3u)) ((+0u)) # slower div (more obvious impl) div* [z rec ++0] ⧗ Unary → Unary → Unary rec [[[[[[=?0 ((+0u) 2 1) (2 (5 0 3 2 1))] (3 - 2)]]]]] # returns remainder of integer division mod [[[[3 [0 [[1]]] (3 [3 [[[0 (2 (5 1)) 1]]] [1] 1] [1]) [[0]]]]]] ⧗ Unary → Unary → Unary …%… mod :test ((+10u) % (+3u)) ((+1u)) :test ((+3u) % (+5u)) ((+3u)) # slower mod (more obvious impl) mod* [[1 [0 [[(0 ⋀? (3 ≤? 1)) case-rec case-end]]] (1 : true) [[1]]]] ⧗ Unary → Unary → Unary case-rec (1 - 3) : true case-end 1 : false # exponentiates two unary number # doesn't give correct results for x^0 pow* [[1 0]] ⧗ Unary → Unary → Unary # exponentiates two unary numbers pow [[0 [[3 (1 0)]] [[1 0]]]] ⧗ Unary → Unary → Unary …^… pow :test ((+2u) ^ (+3u)) ((+8u)) :test ((+3u) ^ (+2u)) ((+9u)) # fibonacci sequence # index +1 vs std/Math fib fib [0 [[[2 0 [2 (1 0)]]]] [[1]] [0]] ⧗ Unary → Unary :test (fib (+6u)) ((+8u)) # factorial function fac [[1 [[0 (1 [[2 1 (1 0)]])]] [1] [0]]] ⧗ Unary → Unary :test (fac (+3u)) ((+6u)) # hyperfactorial function hyperfac [[1 [[(0 0) (1 [[2 1 (1 0)]])]] [1] [0]]] ⧗ Unary → Unary :test (hyperfac (+3u)) ((+108u))