blob: 38d8399f9308fad845bd4911b12b8c5030941a0d (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
-- MIT License, Copyright (c) 2022 Marvin Borner
module Conversion where
import qualified Data.BitString as Bit
import qualified Data.ByteString.Lazy as Byte
import qualified Data.ByteString.Lazy.Char8 as C
import Data.Char ( chr )
import GHC.Real ( denominator
, numerator
)
import Numeric ( showFFloatAlt )
import Helper
listify :: [Expression] -> Expression
listify [] = Abstraction (Abstraction (Bruijn 0))
listify (e : es) =
Abstraction (Application (Application (Bruijn 0) e) (listify es))
binarify :: [Expression] -> Expression
binarify = foldr Application (Bruijn 2)
encodeByte :: [Bool] -> Expression
encodeByte bits = Abstraction $ Abstraction $ Abstraction $ binarify
(map encodeBit bits)
where
encodeBit False = Bruijn 0
encodeBit True = Bruijn 1
-- TODO: There must be a better way to do this :D
encodeBytes :: Byte.ByteString -> Expression
encodeBytes bytes = listify $ map
(encodeByte . Bit.toList . Bit.bitStringLazy . Byte.pack . (: []))
(Byte.unpack bytes)
stringToExpression :: String -> Expression
stringToExpression = encodeBytes . C.pack
charToExpression :: Char -> Expression
charToExpression ch = encodeByte $ Bit.toList $ Bit.bitStringLazy $ C.pack [ch]
encodeStdin :: IO Expression
encodeStdin = encodeBytes <$> Byte.getContents
unlistify :: Expression -> Maybe [Expression]
unlistify (Abstraction (Abstraction (Bruijn 0))) = Just []
unlistify (Abstraction (Application (Application (Bruijn 0) e) es)) =
(:) <$> Just e <*> unlistify es
unlistify _ = Nothing
unpairify :: Expression -> Maybe [Expression]
unpairify (Abstraction (Application (Application (Bruijn 0) e1) e2)) =
Just (e1 : [e2])
unpairify _ = Nothing
decodeByte :: Expression -> Maybe [Bool]
decodeByte (Abstraction (Abstraction (Abstraction es))) = decodeByte es
decodeByte (Application (Bruijn 0) es) = (:) <$> Just False <*> decodeByte es
decodeByte (Application (Bruijn 1) es) = (:) <$> Just True <*> decodeByte es
decodeByte (Bruijn 2 ) = Just []
decodeByte _ = Nothing
decodeStdout :: Expression -> Maybe String
decodeStdout e = do
u <- unlistify e
pure $ C.unpack $ Byte.concat $ map
(\m -> case decodeByte m of
Just b -> Bit.realizeBitStringLazy $ Bit.fromList b
Nothing -> Byte.empty
)
u
---
floatToRational :: Rational -> Expression
floatToRational f = Abstraction
(Application (Application (Bruijn 0) (decimalToTernary p))
(decimalToTernary $ q - 1)
)
where
p = numerator f
q = denominator f
floatToReal :: Rational -> Expression
floatToReal = Abstraction . floatToRational
floatToComplex :: Rational -> Rational -> Expression
floatToComplex r i = Abstraction $ Abstraction $ Application
(Application (Bruijn 0) (Application (floatToReal r) (Bruijn 1)))
(Application (floatToReal i) (Bruijn 1))
-- Dec to Bal3 in Bruijn encoding: reversed application with 0=>0; 1=>1; T=>2; end=>3
-- e.g. 0=0=[[[[3]]]]; 2=1T=[[[[2 (1 3)]]]] -5=T11=[[[[1 (1 (2 3))]]]]
decimalToTernary :: Integer -> Expression
decimalToTernary n =
Abstraction $ Abstraction $ Abstraction $ Abstraction $ gen n
where
gen 0 = Bruijn 3
gen n' =
Application (Bruijn $ fromIntegral $ mod n' 3) (gen $ div (n' + 1) 3)
-- Decimal to binary encoding
decimalToBinary :: Integer -> Expression
decimalToBinary n | n < 0 = decimalToBinary 0
| otherwise = Abstraction $ Abstraction $ Abstraction $ gen n
where
gen 0 = Bruijn 2
gen n' = Application (Bruijn $ fromIntegral $ mod n' 2) (gen $ div n' 2)
-- Decimal to unary (church) encoding
decimalToUnary :: Integer -> Expression
decimalToUnary n | n < 0 = decimalToUnary 0
| otherwise = Abstraction $ Abstraction $ gen n
where
gen 0 = Bruijn 0
gen n' = Application (Bruijn 1) (gen (n' - 1))
-- Decimal to de Bruijn encoding
decimalToDeBruijn :: Integer -> Expression
decimalToDeBruijn n | n < 0 = decimalToDeBruijn 0
| otherwise = gen n
where
gen 0 = Abstraction $ Bruijn $ fromInteger n
gen n' = Abstraction $ gen (n' - 1)
unaryToDecimal :: Expression -> Maybe String
unaryToDecimal e = (<> "u") . show <$> unaryToDecimal' e
unaryToDecimal' :: Expression -> Maybe Integer
unaryToDecimal' e = do
res <- resolve e
return (sum res :: Integer)
where
multiplier (Bruijn 1) = Just 1
multiplier _ = Nothing
resolve' (Bruijn 0) = Just []
resolve' (Application x@(Bruijn _) (Bruijn 0)) =
(:) <$> multiplier x <*> Just []
resolve' (Application x@(Bruijn _) xs@(Application _ _)) =
(:) <$> multiplier x <*> resolve' xs
resolve' _ = Nothing
resolve (Abstraction (Abstraction n)) = resolve' n
resolve _ = Nothing
binaryToChar :: Expression -> Maybe String
binaryToChar e = show <$> binaryToChar' e
binaryToChar' :: Expression -> Maybe Char
binaryToChar' e = do
n <- binaryToDecimal e
if n > 31 && n < 127 || n == 10 then Just $ chr $ fromIntegral n else Nothing
binaryToString :: Expression -> Maybe String
binaryToString e = (<> "b") . show <$> binaryToDecimal e
binaryToDecimal :: Expression -> Maybe Integer
binaryToDecimal e = do
res <- resolve e
return (sum $ zipWith (*) res (iterate (* 2) 1) :: Integer)
where
multiplier (Bruijn 0) = Just 0
multiplier (Bruijn 1) = Just 1
multiplier _ = Nothing
resolve' (Bruijn 2) = Just []
resolve' (Application x@(Bruijn _) (Bruijn 2)) =
(:) <$> multiplier x <*> Just []
resolve' (Application x@(Bruijn _) xs@(Application _ _)) =
(:) <$> multiplier x <*> resolve' xs
resolve' _ = Nothing
resolve (Abstraction (Abstraction (Abstraction n))) = resolve' n
resolve _ = Nothing
ternaryToString :: Expression -> Maybe String
ternaryToString e = (<> "t") . show <$> ternaryToDecimal e
ternaryToDecimal :: Expression -> Maybe Integer
ternaryToDecimal e = do
res <- resolve e
return (sum $ zipWith (*) res (iterate (* 3) 1) :: Integer)
where
multiplier (Bruijn 0) = Just 0
multiplier (Bruijn 1) = Just 1
multiplier (Bruijn 2) = Just (-1)
multiplier _ = Nothing
resolve' (Bruijn 3) = Just []
resolve' (Application x@(Bruijn _) (Bruijn 3)) =
(:) <$> multiplier x <*> Just []
resolve' (Application x@(Bruijn _) xs@(Application _ _)) =
(:) <$> multiplier x <*> resolve' xs
resolve' _ = Nothing
resolve (Abstraction (Abstraction (Abstraction (Abstraction n)))) =
resolve' n
resolve _ = Nothing
rationalToString :: Expression -> Maybe String
rationalToString (Abstraction (Application (Application (Bruijn 0) a) b)) = do
n <- ternaryToDecimal a
d <- ternaryToDecimal b
Just
$ show n
<> "/"
<> show (d + 1)
<> " (approx. "
<> showFFloatAlt (Just 8)
(fromIntegral n / fromIntegral (d + 1) :: Double)
""
<> ")"
rationalToString _ = Nothing
realToString :: Expression -> Maybe String
realToString (Abstraction e) = rationalToString e
realToString _ = Nothing
complexToString :: Expression -> Maybe String
complexToString (Abstraction (Abstraction (Application (Application (Bruijn 0) (Abstraction (Application (Application (Bruijn 0) lr) rr))) (Abstraction (Application (Application (Bruijn 0) li) ri)))))
= do
nlr <- ternaryToDecimal lr
drr <- ternaryToDecimal rr
nli <- ternaryToDecimal li
dri <- ternaryToDecimal ri
Just
$ show nlr
<> "/"
<> show (drr + 1)
<> " + "
<> show nli
<> "/"
<> show (dri + 1)
<> "i"
<> " (approx. "
<> showFFloatAlt (Just 8)
(fromIntegral nlr / fromIntegral (drr + 1) :: Double)
""
<> "+"
<> showFFloatAlt (Just 8)
(fromIntegral nli / fromIntegral (dri + 1) :: Double)
""
<> "i)"
complexToString _ = Nothing
|