aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/Helper.hs
blob: 6c1509d544ba8c6bd4a5e11939e189b47d8ad17a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
module Helper where

import           Control.Monad.State
import qualified Data.BitString                as Bit
import qualified Data.ByteString               as Byte
import           Data.List

printContext :: String -> String
printContext str = p $ lines str
 where
  p [l] = "in \"" <> l <> "\"\n"
  p (l : ls) =
    (p [l])
      <> "near\n"
      <> (intercalate "\n" $ map ("  | " ++) $ take 3 $ ls)
      <> "\n"
  p _ = ""

errPrefix :: String
errPrefix = "\ESC[41mERROR\ESC[0m "
data Error = SyntaxError String | UndeclaredFunction String | InvalidIndex Int | FailedTest Expression Expression Expression Expression | ContextualError Error String
instance Show Error where
  show (ContextualError err ctx) = show err <> "\n" <> (printContext ctx)
  show (SyntaxError err        ) = errPrefix <> "invalid syntax\nnear " <> err
  show (UndeclaredFunction func) =
    errPrefix <> "undeclared function " <> show func
  show (InvalidIndex err) = errPrefix <> "invalid index " <> show err
  show (FailedTest exp1 exp2 red1 red2) =
    errPrefix
      <> "test failed: "
      <> show exp1
      <> " = "
      <> show exp2
      <> "\n      reduced to "
      <> show red1
      <> " = "
      <> show red2
type Failable = Either Error

data Expression = Bruijn Int | Variable String | Abstraction Expression | Application Expression Expression
  deriving (Ord, Eq)
data Instruction = Define String Expression [Instruction] String | Evaluate Expression | Comment | Import String String | Test Expression Expression
  deriving (Show)
instance Show Expression where
  show (Bruijn      x  ) = "\ESC[91m" <> show x <> "\ESC[0m"
  show (Variable    var) = "\ESC[95m" <> var <> "\ESC[0m"
  show (Abstraction e  ) = "\ESC[36m[\ESC[0m" <> show e <> "\ESC[36m]\ESC[0m"
  show (Application exp1 exp2) =
    "\ESC[33m(\ESC[0m" <> show exp1 <> " " <> show exp2 <> "\ESC[33m)\ESC[0m"

type EnvDef = (String, Expression)
data Environment = Environment [(EnvDef, Environment)]
type Program = State Environment

instance Semigroup Environment where
  (Environment e1) <> (Environment e2) = Environment $ e1 <> e2

instance Show Environment where
  show (Environment env) = intercalate "\n" $ map
    (\((n, f), s) -> "\t" <> show n <> ": " <> show f <> " - " <> show s)
    env

---

listify :: [Expression] -> Expression
listify [] = Abstraction (Abstraction (Bruijn 0))
listify (e : es) =
  Abstraction (Application (Application (Bruijn 0) e) (listify es))

encodeByte :: Bit.BitString -> Expression
encodeByte bits = listify (map encodeBit (Bit.toList bits))
 where
  encodeBit False = Abstraction (Abstraction (Bruijn 0))
  encodeBit True  = Abstraction (Abstraction (Bruijn 1))

encodeBytes :: Byte.ByteString -> Expression
encodeBytes bytes =
  listify (map (encodeByte . Bit.from01List . (: [])) (Byte.unpack bytes))

encodeStdin :: IO Expression
encodeStdin = do
  bytes <- Byte.getContents
  pure $ encodeBytes bytes

---

likeTernary :: Expression -> Bool
likeTernary (Abstraction (Abstraction (Abstraction (Abstraction _)))) = True
likeTernary _ = False

-- Dec to Bal3 in Bruijn encoding: reversed application with 0=>0; 1=>1; T=>2; end=>3
-- e.g. 0=0=[[[[3]]]]; 2=1T=[[[[2 (0 3)]]]] -5=T11=[[[[0 (0 (2 3))]]]]
decimalToTernary :: Integer -> Expression
decimalToTernary n =
  Abstraction $ Abstraction $ Abstraction $ Abstraction $ gen n
 where
  gen 0 = Bruijn 3
  gen n' =
    Application (Bruijn $ fromIntegral $ mod n' 3) (gen $ div (n' + 1) 3)

ternaryToDecimal :: Expression -> Integer
ternaryToDecimal e = sum $ zipWith (*) (resolve e) (iterate (* 3) 1)
 where
  multiplier (Bruijn 0) = 0
  multiplier (Bruijn 1) = 1
  multiplier (Bruijn 2) = (-1)
  multiplier _          = 0 -- ??
  resolve' (Application x@(Bruijn _) (Bruijn 3)) = [multiplier x]
  resolve' (Application x@(Bruijn _) xs@(Application _ _)) =
    (multiplier x) : (resolve' xs)
  resolve' _ = [0]
  resolve (Abstraction (Abstraction (Abstraction (Abstraction n)))) =
    resolve' n
  resolve _ = [0]