aboutsummaryrefslogtreecommitdiffhomepage
path: root/std.bruijn
blob: 9a05cdf3becce1c95ade42b12754c789c8192ebf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# ==================
# Common combinators
# ==================

S [[[2 0 (1 0)]]]
K [[1]]
I [0]
B [[[2 (1 0)]]]
C [[[2 0 1]]]
T [[1]]
F [[0]]
ω [0 0]
Ω ω ω
Y [[1 (0 0)] [1 (0 0)]]
Θ [[0 (1 1 0)]] [[0 (1 1 0)]]
i [0 S K]

:test I = i i
:test K = i (i (i i))
:test S = i (i (i (i i)))

# =====
# Pairs
# =====

# pairs two expressions into one
pair [[[0 2 1]]]

# extracts first expression from pair
fst [0 T]
:test fst (pair [[0]] [[1]]) = [[0]]

# extracts second expression from pair
snd [0 F]
:test snd (pair [[0]] [[1]]) = [[1]]

# TODO: investigate currying and chaining functions
#       -> WHNF things?
# chain [[[2 (1 0)]]]

# ===================================
# Ternary
# According to works of T.Æ. Mogensen
# ===================================

# checks whether balanced ternary number is zero
zero? [0 T [F] [F] I]
:test zero? +0 = T
:test zero? -1 = F
:test zero? +1 = F
:test zero? +42 = F

trit-neg [[[2]]]
trit-pos [[[1]]]
trit-zero [[[0]]]

# shifts a negative trit into a balanced ternary number
up-neg [[[[[2 (4 3 2 1 0)]]]]]
:test up-neg +0 = -1
:test up-neg -1 = -4
:test up-neg +42 = +125

# shifts a positive trit into a balanced ternary number
up-pos [[[[[1 (4 3 2 1 0)]]]]]
:test up-pos +0 = +1
:test up-pos -1 = -2
:test up-pos +42 = +127

# shifts a zero trit into a balanced ternary number
up-zero [[[[[0 (4 3 2 1 0)]]]]]
:test up-zero +0 = [[[[0 3]]]]
:test up-zero +1 = +3
:test up-zero +42 = +126

# shifts a specified trit into a balanced ternary number
up [[[[[[5 2 1 0 (4 3 2 1 0)]]]]]]
:test up trit-neg +42 = up-neg +42
:test up trit-pos +42 = up-pos +42
:test up trit-zero +42 = up-zero +42

# negates a balanced ternary number
negate [[[[[4 3 1 2 0]]]]]
:test negate +0 = +0
:test negate -1 = +1
:test negate +42 = -42

# extracts least significant trit from balanced ternary numbers
lst [0 trit-zero [trit-neg] [trit-pos] [trit-zero]]
:test lst +0 = trit-zero
:test lst -1 = trit-neg
:test lst +1 = trit-pos
:test lst +42 = trit-zero

# converts the normal balanced ternary representation into abstract
# -> the abstract representation is used in add/sub/mul
_abs-neg [[[[[2 4]]]]]
_abs-pos [[[[[1 4]]]]]
_abs-zero [[[[[0 4]]]]]
abstractify [0 [[[[3]]]] _abs-neg _abs-pos _abs-zero]
:test abstractify -3 = [[[[0 [[[[2 [[[[3]]]]]]]]]]]]
:test abstractify +0 = [[[[3]]]]
:test abstractify +3 = [[[[0 [[[[1 [[[[3]]]]]]]]]]]]

# converts the abstracted balanced ternary representation back to normal
# using Y/ω to solve recursion
_normalize [[0 +0 [up-neg ([3 3 0] 0)] [up-pos ([3 3 0] 0)] [up-zero ([3 3 0] 0)]]]
normalize ω _normalize
:test normalize [[[[3]]]] = +0
:test normalize (abstractify +42) = +42
:test normalize (abstractify -42) = -42

# checks whether two balanced ternary numbers are equal
# -> removes leading 0s!
_eq-z [zero? (normalize 0)]
_eq-neg [[0 F [2 0] [F] [F]]]
_eq-pos [[0 F [F] [2 0] [F]]]
_eq-zero [[0 (1 0) [F] [F] [2 0]]]
_eq-abs [0 _eq-z _eq-neg _eq-pos _eq-zero]
eq? [[_eq-abs 1 (abstractify 0)]]
:test eq? -42 -42 = T
:test eq? -1 -1 = T
:test eq? -1 +0 = F
:test eq? +0 +0 = T
:test eq? +1 +0 = F
:test eq? +1 +1 = T
:test eq? +42 +42 = T
:test eq? [[[[(1 (0 (0 (0 (0 3)))))]]]] +1 = T

# strips leading 0s from balanced ternary number
_strip-z pair +0 T
_strip-neg [0 [[pair (up-neg 1) F]]]
_strip-pos [0 [[pair (up-pos 1) F]]]
_strip-zero [0 [[pair (0 +0 (up-zero 1)) 0]]]
strip [fst (0 _strip-z _strip-neg _strip-pos _strip-zero)]
:test strip [[[[0 3]]]] = +0
:test strip [[[[2 (0 (0 (0 (0 3))))]]]] = -1
:test strip +42 = +42

# I believe Mogensen's Paper has an error in its succ/pred definitions.
# They use 3 abstractions in the _succ* functions, also we use switched +/0
# in comparison to their implementation, yet the order of neg/pos/zero is
# the same. Something's weird.

# adds +1 to a balanced ternary number (can introduce leading 0s)
_succ-z pair +0 +1
_succ-neg [0 [[pair (up-neg 1) (up-zero 1)]]]
_succ-zero [0 [[pair (up-zero 1) (up-pos 1)]]]
_succ-pos [0 [[pair (up-pos 1) (up-neg 0)]]]
succ [snd (0 _succ-z _succ-neg _succ-pos _succ-zero)]
ssucc [strip (succ 0)]
:test eq? (succ -42) -41 = T
:test eq? (succ -1) +0 = T
:test eq? (succ +0) +1 = T
:test eq? (succ (succ (succ (succ (succ +0))))) +5 = T
:test eq? (succ +42) +43 = T

# subs +1 from a balanced ternary number (can introduce leading 0s)
_pred-z pair +0 -1
_pred-neg [0 [[pair (up-neg 1) (up-pos 0)]]]
_pred-zero [0 [[pair (up-zero 1) (up-neg 1)]]]
_pred-pos [0 [[pair (up-pos 1) (up-zero 1)]]]
pred [snd (0 _pred-z _pred-neg _pred-pos _pred-zero)]
spred [strip (pred 0)]
:test pred -42 = -43
:test pred +0 = -1
:test spred (pred (pred (pred (pred +5)))) = +0
:test spred +1 = +0
:test pred +42 = +41

# adds two balanced ternary numbers (can introduce leading 0s)
_add-c [[1 0 trit-zero]]
_add-b-neg2 [1 (up-zero (3 0 trit-neg)) (up-neg (3 0 trit-zero)) (up-pos (3 0 trit-neg))]
_add-b-neg [1 (up-pos (3 0 trit-neg)) (up-zero (3 0 trit-zero)) (up-neg (3 0 trit-zero))]
_add-b-zero [up 1 (3 0 trit-zero)]
_add-b-pos [1 (up-zero (3 0 trit-zero)) (up-neg (3 0 trit-pos)) (up-pos (3 0 trit-zero))]
_add-b-pos2 [1 (up-pos (3 0 trit-zero)) (up-zero (3 0 trit-pos)) (up-neg (3 0 trit-pos))]
_add-a-neg [[[1 (_add-b-neg 1) _add-b-neg2 _add-b-zero _add-b-neg]]]
_add-a-pos [[[1 (_add-b-pos 1) _add-b-zero _add-b-pos2 _add-b-pos]]]
_add-a-zero [[[1 (_add-b-zero 1) _add-b-neg _add-b-pos _add-b-zero]]]
_add-z [[0 (pred (normalize 1)) (succ (normalize 1)) (normalize 1)]]
_add-abs [_add-c (0 _add-z _add-a-neg _add-a-pos _add-a-zero)]
add [[_add-abs 1 (abstractify 0)]]
sadd [[strip (add 1 0)]]
:test eq? (add -42 -1) -43 = T
:test eq? (add -5 +6) +1 = T
:test eq? (add -1 +0) -1 = T
:test eq? (add +0 +0) +0 = T
:test eq? (add +1 +2) +3 = T
:test eq? (add +42 +1) +43 = T

# subs two balanced ternary numbers (can introduce leading 0s)
sub [[add 1 (negate 0)]]
ssub [[strip (sub 1 0)]]
:test eq? (sub -42 -1) -41 = T
:test eq? (sub -5 +6) -11 = T
:test eq? (sub -1 +0) -1 = T
:test eq? (sub +0 +0) +0 = T
:test eq? (sub +1 +2) -1 = T
:test eq? (sub +42 +1) +41 = T

# muls two balanced ternary numbers (can introduce leading 0s)
_mul-neg [sub (up-zero 0) 1]
_mul-pos [add (up-zero 0) 1]
_mul-zero [up-zero 0]
mul [[1 +0 _mul-neg _mul-pos _mul-zero]]
smul [[strip (mul 1 0)]]
:test eq? (mul +42 +0) +0 = T
:test eq? (mul -1 +42) -42 = T
:test eq? (mul +3 +11) +33 = T
:test eq? (mul +42 -4) -168 = T

# ===============
# Boolean algebra
# ===============

not [0 F T]
and [[1 0 F]]
or [[1 T 0]]
xor [[1 (not 0) 0]]
if [[[2 1 0]]]
:test not (or (and false true) true) = false

# ===============
# Church numerals
# ===============

church-zero [[0]]
church-succ [[[1 (2 1 0)]]]
church-add [[[[3 1 (2 1 0)]]]]
church-mul [[[2 (1 0)]]]
church-exp [[0 1]]

main [[[0 2 1]]]