aboutsummaryrefslogtreecommitdiffhomepage
path: root/std/Binary.bruijn
blob: 9fd95da7363d27061d3b2c263d5c208195c593ab (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# MIT License, Copyright (c) 2023 Marvin Borner
# TODO: Use abstract representation for logic instead of listifying

:import std/Combinator .
:import std/List .
:import std/Logic .

# bit indicating a one, compatible with std/Logic
b¹ true ⧗ Bit

# bit indicating a zero, compatible with std/Logic
b⁰ false ⧗ Bit

# returns true if a bit is set
b¹? i ⧗ Bit → Boolean

:test (b¹? b¹) (true)
:test (b¹? b⁰) (false)

# returns true if a bit is unset
b⁰? not! ⧗ Bit → Boolean

:test (b⁰? b⁰) (true)
:test (b⁰? b¹) (false)

# shifts a one into a binary number
↑¹‣ [[[[1 (3 2 1 0)]]]] ⧗ Binary → Binary

:test (↑¹[[[0 2]]]) ([[[1 (0 2)]]])

# shifts a zero into a binary number
↑⁰‣ [[[[0 (3 2 1 0)]]]] ⧗ Binary → Binary

:test (↑⁰(+1b)) ((+2b))

# shifts a specified bit into a binary number
up [[[[[4 1 0 (3 2 1 0)]]]]] ⧗ Bit → Binary → Binary

:test (up b¹ [[[0 2]]]) ([[[1 (0 2)]]])
:test (up b⁰ (+1b)) ((+2b))

# converts a binary number to a list of bits
list! [0 z a¹ a⁰] ⧗ Binary → (List Bit)
	z empty
	a¹ [b¹ : 0]
	a⁰ [b⁰ : 0]

:test (list! (+0b)) (empty)
:test (list! (+6b)) (b⁰ : (b¹ : (b¹ : empty)))

# converts a list of bits to a binary number
binary! foldr up (+0b) ⧗ (List Bit) → Binary

:test (binary! (list! (+0b))) ((+0b))
:test (binary! (list! (+42b))) ((+42b))

# strips leading 0s from a binary number
strip [^(0 z a¹ a⁰)] ⧗ Binary → Binary
	z (+0b) : true
	a¹ [0 [[↑¹1 : false]]]
	a⁰ [0 [[(0 (+0b) ↑⁰1) : 0]]]

%‣ strip

:test (%[[[0 2]]]) ((+0b))
:test (%[[[1 (0 (0 (0 (0 2))))]]]) ((+1b))
:test (%(+2b)) ((+2b))

# returns true if a binary number is zero
zero? [0 true [false] i] ⧗ Binary → Boolean

=?‣ zero?

:test (=?(+0b)) (true)
:test (=?[[[0 (0 2)]]]) (true)
:test (=?(+1b)) (false)

# extracts least significant bit from a binary number
lst [0 b⁰ [b¹] [b⁰]] ⧗ Binary → Bit

:test (lst (+0b)) (b⁰)
:test (lst (+1b)) (b¹)
:test (lst (+42b)) (b⁰)

# extracts most significant bit from a binary number
# not really useful for binary numbers, but part of interface
mst [=?0 b⁰ ^(<~>(list! %0))] ⧗ Binary → Bit

:test (mst (+0b)) (b⁰)
:test (mst (+1b)) (b¹)
:test (mst (+42b)) (b¹)

# extracts nth bit from a binary number
nth …!!… ∘ list! ⧗ Binary → Number → Bit

# logical and on two binary numbers
and! binary! ∘∘ (ψ* zip-with …⋀?… list!) ⧗ Binary → Binary → Binary

…⋀!… and!

:test (and! (+1b) (+0b)) ((+0b))
:test (and! (+5b) (+4b)) ((+4b))
:test (and! (+10b) (+12b)) ((+8b))

# logical or on two binary numbers
# TODO: Fix for numbers with different length (→ zero padding?)
or! binary! ∘∘ (ψ* zip-with …⋁?… list!) ⧗ Binary → Binary → Binary

…⋁!… or!

:test (or! (+10b) (+12b)) ((+14b))

# :test (or! (+1b) (+0b)) ((+1b))
# :test (or! (+5b) (+3b)) ((+7b))

# converts the normal binary representation into abstract
abstract! [0 z a¹ a⁰] ⧗ Binary → AbstractBinary
	z (+0b)
	a¹ [[[[1 3]]]]
	a⁰ [[[[0 3]]]]

→^‣ abstract!

# converts the abstracted binary representation back to normal
normal! ω [[0 z a¹ a⁰]] ⧗ AbstractBinary → Binary
	z (+0b)
	a¹ [↑¹([3 3 0] 0)]
	a⁰ [↑⁰([3 3 0] 0)]

→_‣ normal!

# returns true if two binary numbers are equal
# → ignores leading 0s!
# also: ⋀?‣ ∘∘ (ψ* zip-with xnor? list!)
eq? [[abs 1 →^0]] ⧗ Binary → Binary → Boolean
	abs [0 z a¹ a⁰]
		z [=?(→_0)]
		a¹ [[0 false [2 0] [false]]]
		a⁰ [[0 (1 0) [false] [2 0]]]

…=?… eq?

:test ((+0b) =? (+0b)) (true)
:test ([[[1 (0 2)]]] =? [[[1 (0 2)]]]) (true)
:test ([[[1 (0 2)]]] =? (+2b)) (false)

# returns true if two binary numbers are not equal
not-eq? not! ∘∘ eq? ⧗ Binary → Binary → Boolean

…≠?… not-eq?

:test ((+0b) ≠? (+0b)) (false)
:test ([[[1 (0 2)]]] ≠? [[[1 (0 2)]]]) (false)
:test ([[[1 (0 2)]]] ≠? (+2b)) (true)

# adds 1 to a binary number (can introduce leading 0s)
inc [~(0 z a¹ a⁰)] ⧗ Binary → Binary
	z (+0b) : (+1b)
	a¹ [0 [[↑¹1 : ↑⁰0]]]
	a⁰ [0 [[↑⁰1 : ↑¹1]]]

++‣ inc

:test (++(+0b)) ((+1b))
:test (++(+2b)) ((+3b))

# subs 1 from a binary number (can introduce leading 0s)
dec [~(0 z a¹ a⁰)] ⧗ Binary → Binary
	z (+0b) : (+0b)
	a¹ [0 [[↑¹1 : ↑⁰1]]]
	a⁰ [0 [[↑⁰1 : ↑¹0]]]

--‣ dec

:test (--(+0b)) ((+0b))
:test (--(+1b)) ([[[0 2]]])
:test (--(+3b)) ((+2b))

# adds two binary numbers (can introduce leading 0s)
# second argument gets abstracted (performance)
add [[abs 1 →^0]] ⧗ Binary → Binary → Binary
	abs [c (0 z a¹ a⁰)]
		c¹ [1 ↑⁰(3 0 b¹) ↑¹(3 0 b⁰)]
		a¹ [[[1 (c¹ 1) c¹' c¹]]]
			c¹' [up 1 (3 0 b¹)]
		a⁰ [[[1 (c⁰ 1) c¹ c⁰]]]
			c⁰ [up 1 (3 0 b⁰)]
		z [[0 ++(→_1) →_1]]
		c [[1 0 b⁰]]

…+… add

:test (((+0b) + (+0b)) =? (+0b)) (true)
:test (((+0b) + (+3b)) =? (+3b)) (true)
:test (((+1b) + (+2b)) =? (+3b)) (true)
:test (((+42b) + (+1b)) =? (+43b)) (true)

# subs two binary numbers (can introduce leading 0s)
# second argument gets abstracted (performance)
sub [[abs 1 →^0]] ⧗ Binary → Binary → Binary
	abs [c (0 z a¹ a⁰)]
		a¹ [[[1 (c¹ 1) c¹' c¹]]]
			c¹ [1 ↑⁰(3 0 b¹) ↑¹(3 0 b⁰)]
			c¹' [1 ↑¹(3 0 b⁰) ↑¹(3 0 b⁰)]
		a⁰ [[[1 (c⁰ 1) c⁰' c⁰]]]
			c⁰ [1 ↑¹(3 0 b⁰) ↑⁰(3 0 b⁰)]
			c⁰' [1 (3 0 b⁰) ↑¹(3 0 b¹)]
		z [[0 --(→_1) →_1]]
		c [[1 0 b⁰]]

…-… sub

:test ((+5b) - (+0b)) ((+5b))
:test ((+8b) - (+3b)) ((+5b))
:test ((+10b) - (+5b)) ((+5b))
:test (((+20b) - (+1b))) ((+19b))

# :test (%((+20b) - (+0b))) ((+20b))
# :test (%((+20b) - (+1b))) ((+19b))
# :test (%((+19b) - (+1b))) ((+18b))
# :test (%((+19b) - (+2b))) ((+17b))
# :test (%((+18b) - (+2b))) ((+16b))
# :test (%((+18b) - (+3b))) ((+15b))
# :test (%((+17b) - (+3b))) ((+14b))
# :test (%((+17b) - (+4b))) ((+13b))
# :test (%((+16b) - (+4b))) ((+12b))
# :test (%((+16b) - (+5b))) ((+11b))
# :test (%((+15b) - (+5b))) ((+10b))
# :test (%((+15b) - (+6b))) ((+9b))
# :test (%((+14b) - (+6b))) ((+8b))
# :test (%((+14b) - (+7b))) ((+7b))
# :test (%((+13b) - (+7b))) ((+6b))
# :test (%((+13b) - (+8b))) ((+5b))
# :test (%((+12b) - (+8b))) ((+4b))
# :test (%((+12b) - (+9b))) ((+3b))
# :test (%((+11b) - (+9b))) ((+2b))
# :test (%((+11b) - (+10b))) ((+1b))
# :test (%((+10b) - (+10b))) ((+0b))