blob: bce94634a4f01fb43884a41351dce402939b7e2c (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
# MIT License, Copyright (c) 2022 Marvin Borner
# Lists in Church/Boehm-Berarducci encoding using pairs
:import std/Combinator .
:import std/Pair P
:import std/Logic .
:import std/Number .
# empty list element
empty false
# returns true if a list is empty
empty? [0 [[[false]]] true]
∅?‣ empty?
:test (∅?empty) (true)
# prepends an element to a list
cons P.pair
…:… cons
:test ((+1) : ((+2) : empty)) (P.pair (+1) (P.pair (+2) empty))
:test (∅?((+2) : empty)) (false)
# returns the head of a list or empty
head P.fst
^‣ head
:test (^((+1) : ((+2) : empty))) ((+1))
# returns the tail of a list or empty
tail P.snd
~‣ tail
:test (~((+1) : ((+2) : empty))) ((+2) : empty)
# returns the length of a list in balanced ternary
length z [[[rec]]] (+0)
rec ∅?0 case-end case-inc
case-inc 2 ++1 ~0
case-end 1
∀‣ length
:test (∀((+1) : ((+2) : empty))) ((+2))
:test (∀empty) ((+0))
# returns the element at index in list
index z [[[rec]]]
rec ∅?0 case-end case-index
case-index =?1 ^0 (2 --1 ~0)
case-end empty
…!!… \index
:test (((+1) : ((+2) : ((+3) : empty))) !! (+0)) ((+1))
:test (((+1) : ((+2) : ((+3) : empty))) !! (+2)) ((+3))
:test (((+1) : ((+2) : ((+3) : empty))) !! (-1)) (empty)
:test (((+1) : ((+2) : ((+3) : empty))) !! (+3)) (empty)
# applies a left fold on a list
foldl z [[[[rec]]]]
rec ∅?0 case-end case-fold
case-fold 3 2 (2 1 ^0) ~0
case-end 1
:test ((foldl …+… (+0) ((+1) : ((+2) : ((+3) : empty)))) =? (+6)) (true)
:test ((foldl …-… (+6) ((+1) : ((+2) : ((+3) : empty)))) =? (+0)) (true)
# foldl without starting value
foldl1 [[foldl 1 ^0 ~0]]
# applies a right fold on a list
foldr [[[z [[rec]] 0]]]
rec ∅?0 case-end case-fold
case-fold 4 ^0 (1 ~0)
case-end 3
:test ((foldr …+… (+0) ((+1) : ((+2) : ((+3) : empty)))) =? (+6)) (true)
:test ((foldr …-… (+2) ((+1) : ((+2) : ((+3) : empty)))) =? (+0)) (true)
# foldr without starting value
foldr1 [[foldl 1 ^0 ~0]]
# applies or to all list elements
lor? foldr or? false
⋁?‣ lor?
:test (⋁?(true : (true : empty))) (true)
:test (⋁?(true : (false : empty))) (true)
:test (⋁?(false : (false : empty))) (false)
# applies and to all list elements
land? foldr and? true
⋀?‣ land?
:test (⋀?(true : (true : empty))) (true)
:test (⋀?(true : (false : empty))) (false)
:test (⋀?(false : (false : empty))) (false)
# reverses a list
reverse foldl \cons empty
<~>‣ reverse
:test (<~>((+1) : ((+2) : ((+3) : empty)))) ((+3) : ((+2) : ((+1) : empty)))
# creates list out of n terms
# TODO: fix for balanced ternary
list [0 [[[2 (0 : 1)]]] reverse empty]
# creates list with single element
singleton [0 : empty]
{…} singleton
:test ({ (+1) }) ((+1) : empty)
# appends two lists
append z [[[rec]]]
rec ∅?1 case-end case-append
case-append ^1 : (2 ~1 0)
case-end 0
…++… append
:test (((+1) : ((+2) : ((+3) : empty))) ++ ((+4) : empty)) ((+1) : ((+2) : ((+3) : ((+4) : empty))))
# appends an element to a list
snoc [[1 ++ ({ 0 })]]
…;… snoc
:test (empty ; (+1)) ((+1) : empty)
:test (((+1) : empty) ; (+2)) ((+1) : ((+2) : empty))
# maps each element to a function
map z [[[rec]]]
rec ∅?0 case-end case-map
case-map (1 ^0) : (2 1 ~0)
case-end empty
…<$>… map
:test (++‣ <$> ((+1) : ((+2) : ((+3) : empty)))) ((+2) : ((+3) : ((+4) : empty)))
# filters a list based on a predicate
filter z [[[rec]]]
rec ∅?0 case-end case-filter
case-filter 1 ^0 (cons ^0) i (2 1 ~0)
case-end empty
…<#>… \filter
:test (((+1) : ((+0) : ((+3) : empty))) <#> zero?) ((+0) : empty)
# returns the last element of a list
# - slow algorithm:
# last z [[rec]]
# rec ∅?0 case-end case-last
# case-last ∅?(~0) ^0 (1 ~0)
# case-end empty
# - taking the first element of the reversed list is actually way faster because laziness
last ^‣ ∘ <~>‣
_‣ last
:test (_((+1) : ((+2) : ((+3) : empty)))) ((+3))
# returns everything but the last element of a list
init z [[rec]]
rec ∅?0 case-end case-init
case-init ∅?(~0) empty (^0 : (1 ~0))
case-end empty
:test (init ((+1) : ((+2) : ((+3) : empty)))) ((+1) : ((+2) : empty))
# concatenates a list of lists to one list
concat foldr append empty
# TODO: ?
# :test (concat ((((+1) : ((+2) : empty)) : ((+3) : ((+4) : empty))) : empty)) ((+1) : ((+2) : ((+3) : ((+4) : empty))))
:test (concat ("a" : ("b" : empty))) ("ab")
# maps a function returning list of list and concatenates
concat-map concat ∘∘ map
:test (concat-map [-0 : (0 : empty)] ((+1) : ((+2) : empty))) ((-1) : ((+1) : ((-2) : ((+2) : empty))))
# zips two lists discarding excess elements
zip z [[[rec]]]
rec ∅?1 case-end case-zip
case-zip ∅?0 empty ((^1 : ^0) : (2 ~1 ~0))
case-end empty
:test (zip ((+1) : ((+2) : empty)) ((+2) : ((+1) : empty))) (((+1) : (+2)) : (((+2) : (+1)) : empty))
# applies pairs of the zipped list as arguments to a function
zip-with z [[[[rec]]]]
rec ∅?1 case-end case-zip
case-zip ∅?0 empty ((2 ^1 ^0) : (3 2 ~1 ~0))
case-end empty
:test (zip-with …+… ((+1) : ((+2) : empty)) ((+2) : ((+1) : empty))) ((+3) : ((+3) : empty))
# list comprehension
{…|…} map
:test ({ ++‣ | ((+0) : ((+2) : empty)) }) ((+1) : ((+3) : empty))
# doubled list comprehension
{…|…,…} zip-with
:test ({ …+… | ((+0) : ((+2) : empty)) , ((+1) : ((+3) : empty)) }) ((+1) : ((+5) : empty))
# returns first n elements of a list
take z [[[rec]]]
rec ∅?0 case-end case-take
case-take =?1 empty (^0 : (2 --1 ~0))
case-end empty
:test (take (+2) ((+1) : ((+2) : ((+3) : empty)))) ((+1) : ((+2) : empty))
# takes elements while a predicate is satisfied
take-while z [[[rec]]]
rec ∅?0 case-end case-take
case-take 1 ^0 (^0 : (2 1 ~0)) empty
case-end empty
:test (take-while zero? ((+0) : ((+0) : ((+1) : empty)))) ((+0) : ((+0) : empty))
# removes first n elements of a list
drop z [[[rec]]]
rec ∅?0 case-end case-drop
case-drop =?1 0 (2 --1 ~0)
case-end empty
:test (drop (+2) ((+1) : ((+2) : ((+3) : empty)))) ((+3) : empty)
# removes elements from list while a predicate is satisfied
drop-while z [[[rec]]]
rec ∅?0 case-end case-drop
case-drop 1 ^0 (2 1 ~0) 0
case-end empty
:test (drop-while zero? ((+0) : ((+0) : ((+1) : empty)))) ((+1) : empty)
# returns pair of take-while and drop-while
span z [[[rec]]]
rec ∅?0 case-end case-drop
case-drop 1 ^0 ((^0 : ^recced) : ~recced) (empty : 0)
recced 2 1 ~0
case-end empty : empty
:test (span (\les? (+3)) ((+1) : ((+2) : ((+4) : ((+1) : empty))))) (((+1) : ((+2) : empty)) : ((+4) : ((+1) : empty)))
# same as span but with inverted predicate
break span ∘ (…∘… ¬‣)
:test (break (\gre? (+3)) ((+1) : ((+2) : ((+4) : ((+1) : empty))))) (((+1) : ((+2) : empty)) : ((+4) : ((+1) : empty)))
# splits a list into two lists based on predicate
split-at z [[[rec]]]
rec ∅?dropped case-end case-split
dropped drop-while 1 0
case-split ^broken : (2 1 ~broken)
broken break 1 dropped
case-end empty
:test (split-at (…=?… (+1)) ((+2) : ((+1) : ((+3) : ((+2) : empty))))) ((((+2) : empty) : (((+3) : ((+2) : empty)) : empty)))
# returns true if any element in a list matches a predicate
any? ⋁?‣ ∘∘ map
:test (any? (\gre? (+2)) ((+1) : ((+2) : ((+3) : empty)))) (true)
:test (any? (\gre? (+2)) ((+1) : ((+2) : ((+2) : empty)))) (false)
# returns true if all elements in a list match a predicate
all? ⋀?‣ ∘∘ map
:test (all? (\gre? (+2)) ((+3) : ((+4) : ((+5) : empty)))) (true)
:test (all? (\gre? (+2)) ((+4) : ((+3) : ((+2) : empty)))) (false)
# returns true if element is part of a list based on eq predicate
in? …∘… any?
:test (in? …=?… (+3) ((+1) : ((+2) : ((+3) : empty)))) (true)
:test (in? …=?… (+0) ((+1) : ((+2) : ((+3) : empty)))) (false)
# returns true if all elements of one list are equal to corresponding elements of other list
eq? ⋀?‣ ∘∘∘ zip-with
:test (eq? …=?… ((+1) : ((+2) : empty)) ((+1) : ((+2) : empty))) (true)
:test (eq? …=?… ((+1) : ((+2) : empty)) ((+2) : ((+2) : empty))) (false)
:test (eq? …=?… empty empty) (true)
# removes first element that match an eq predicate
remove z [[[[rec]]]]
rec ∅?0 case-end case-remove
case-remove (2 ^0 1) ~0 (^0 : (3 2 1 ~0))
case-end empty
:test (remove …=?… (+2) ((+1) : ((+2) : ((+3) : ((+2) : empty))))) ((+1) : ((+3) : ((+2) : empty)))
# removes duplicates from list based on eq predicate (keeps first occurrence)
nub z [[[rec]]]
rec ∅?0 case-end case-nub
case-nub ^0 : (2 1 (~0 <#> [¬(2 0 ^1)]))
case-end empty
:test (nub …=?… ((+1) : ((+2) : ((+3) : empty)))) (((+1) : ((+2) : ((+3) : empty))))
:test (nub …=?… ((+1) : ((+2) : ((+1) : empty)))) (((+1) : ((+2) : empty)))
# returns a list with infinite-times a element
repeat z [[rec]]
rec 0 : (1 0)
:test (take (+3) (repeat (+4))) ((+4) : ((+4) : ((+4) : empty)))
# returns a list with n-times a element
replicate \(g take repeat)
:test (replicate (+3) (+4)) ((+4) : ((+4) : ((+4) : empty)))
# returns an infinite list repeating a finite list
cycle z [[rec]]
rec 0 ++ (1 0)
:test (take (+6) (cycle "ab")) ("ababab")
# returns a list with infinite-times previous (or start) value applied to a function
iterate z [[[rec]]]
rec 0 : (2 1 (1 0))
:test (take (+5) (iterate ++‣ (+0))) (((+0) : ((+1) : ((+2) : ((+3) : ((+4) : empty))))))
:test (take (+2) (iterate (%‣ ∘ dec) (+5))) (((+5) : ((+4) : empty)))
:test (take (+5) (iterate i (+4))) (take (+5) (repeat (+4)))
:test (take (+0) (iterate ++‣ (+0))) (empty)
|