blob: 3b67c351a511cbe22c7a915edd96d58199628d59 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
# MIT License, Copyright (c) 2023 Marvin Borner
# utilities for meta programming with quoted terms
:import std/Logic .
:import std/Combinator .
:import std/Number/Unary .
:import std/List .
:import std/Number/Pairing .
:import std/Number/Conversion .
:import std/Pair P
# constructor of meta abstraction
abs [[[[0 3]]]] ⧗ Meta → Meta
:test (abs `0) (`[0])
# true if abstraction
abs? [0 [false] [[false]] [true]] ⧗ Meta → Bool
:test (abs? `[0]) (true)
:test (abs? `([0] [0])) (false)
:test (abs? `0) (false)
# extracts meta term from meta abstraction
abs! [0 0 0 [0]] ⧗ Meta → Meta
:test (abs! `[[0]]) (`[0])
# constructor of meta application
app [[[[[1 4 3]]]]] ⧗ Meta → Meta → Meta
:test (app `[[1]] `[0]) (`([[1]] [0]))
# true if application
app? [0 [false] [[true]] [false]] ⧗ Meta → Bool
:test (app? `[0]) (false)
:test (app? `([0] [0])) (true)
:test (app? `0) (false)
# extracts both meta terms from meta application
app! [0 0 cons 0] ⧗ Meta → (Pair Meta Meta)
:test (app! `([[1]] [[0]])) (`[[1]] : `[[0]])
# extracts lhs meta term from meta application
app-lhs! ^‣ ∘ app! ⧗ Meta → Meta
:test (app-lhs! `([[1]] [[0]])) (`[[1]])
# extracts rhs meta term from meta application
app-rhs! ~‣ ∘ app! ⧗ Meta → Meta
:test (app-rhs! `([[1]] [[0]])) (`[[0]])
# constructor of meta variable/index
idx [[[[2 3]]]] ⧗ Unary → Meta
:test (idx (+0u)) (`0)
# true if variable/index
idx? [0 [true] [[false]] [false]] ⧗ Meta → Bool
:test (idx? `[0]) (false)
:test (idx? `([0] [0])) (false)
:test (idx? `0) (true)
# extracts index from meta index
idx! [0 [0] 0 0] ⧗ Meta → Unary
:test (idx! `0) ((+0u))
:test (idx! `3) ((+3u))
# traverses meta term
fold y [[[[[rec]]]]] ⧗ (Unary → a) → (a → a → a) → (a → a) → Meta → a
rec 0 case-idx case-app case-abs
case-idx 3
case-app ψ 2 (4 3 2 1)
case-abs 1 ∘ (4 3 2 1)
# calculates blc length of meta term
length fold idx-cb app-cb abs-cb ⧗ Meta → Unary
idx-cb add (+2u)
app-cb (add (+2u)) ∘∘ add
abs-cb add (+2u)
:test (length `[0]) ((+4u))
:test (length `[[1 1]]) ((+12u))
# true bit
blc1 [[0]] ⧗ LcBit
# false bit
blc0 [[1]] ⧗ LcBit
# converts meta term to blc list
blc fold idx-cb app-cb abs-cb ⧗ Meta → (List LcBit)
idx-cb [++0 (cons blc1) {}blc0]
app-cb (cons blc0) ∘ (cons blc1) ∘∘ append
abs-cb (cons blc0) ∘ (cons blc0)
:test (blc `[0]) (blc0 : (blc0 : (blc1 : {}blc0)))
:test (blc `[[1 1]]) (blc0 : (blc0 : (blc0 : (blc0 : (blc0 : (blc1 : (blc1 : (blc1 : (blc0 : (blc1 : (blc1 : {}blc0)))))))))))
α-eq? y [[[rec]]] ⧗ Meta → Meta → Bool
rec 1 case-idx case-app case-abs
case-idx [(idx? 1) (0 =? (idx! 1)) false]
case-app [[(app? 2) (app! 2 [[(6 3 1) ⋀? (6 2 0)]]) false]]
case-abs [(abs? 1) (3 (abs! 1) 0) false]
:test (α-eq? `0 `1) (false)
:test (α-eq? `1 `1) (true)
:test (α-eq? `(0 0) `1) (false)
:test (α-eq? `(0 0) `(1 0)) (false)
:test (α-eq? `(0 0) `(0 0)) (true)
:test (α-eq? `(0 1) `(0 1)) (true)
:test (α-eq? `[0] `[1]) (false)
:test (α-eq? `[0] `[0]) (true)
:test (α-eq? `α-eq? `α-eq?) (true)
# modified Tromp 232 bit universal machine
eval-blc y [[[rec]]] [0 Ω] ⧗ (List LcBit) → a
rec 0 [[0 [2 case-0 case-1]]]
case-0 5 [1 case-00 case-01]
case-00 5 [[2 (0 : 1)]]
case-01 6 [6 [2 0 (1 0)]]
case-1 0 case-10 case-11
case-10 4 head
case-11 [6 [6 [1 ~0]] 2]
eval* eval-blc ∘ blc ⧗ Meta → Meta
# self interpreter for meta encoding
eval y [[[rec]]] [0 Ω] ⧗ Meta → a
rec 0 case-idx case-app case-abs
case-idx [2 [1 [0 [[0]]] 0 [[1]]]]
case-app 2 [3 [3 [2 0 (1 0)]]]
case-abs 2 [2 [[2 [0 1 2]]]]
!‣ eval
:test (!`(α-eq? `α-eq? `α-eq?)) (true)
:test (!`((+21u) + (+21u))) ((+42u))
# increments indices reaching out of their abstraction depth
κ y [[[rec]]] ⧗ Meta → Unary → Meta
rec 1 case-idx case-app case-abs
case-idx [idx ((1 >? 0) 0 ++0)]
case-app [[app (4 1 2) (4 0 2)]]
case-abs [abs (3 0 ++1)]
:test (κ `0 (+1u)) (`0)
:test (κ `0 (+0u)) (`1)
:test (κ `1 (+0u)) (`2)
:test (κ `[0] (+0u)) (`[0])
:test (κ `[1] (+0u)) (`[2])
:test (κ `[2] (+1u)) (`[3])
:test (κ `(1 0) (+1u)) (`(2 0))
# substitutes term based on unary abstraction depth
σ y [[[[rec]]]] ⧗ Meta → Meta → Unary → Meta
rec 2 case-idx case-app case-abs
case-idx [compare-case case-eq case-lt case-gt 1 0]
case-eq 2
case-lt idx 0
case-gt idx --0
case-app [[app (5 1 3 2) (5 0 3 2)]]
case-abs [abs (4 0 (κ 2 (+0u)) ++1)]
:test (σ `0 `2 (+0u)) (`2)
:test (σ `[1] `2 (+0u)) (`[3])
:test (σ `[[4 0]] `2 (+1u)) (`[[3 0]])
:test (σ `[[3] [3]] `0 (+0u)) (`[[2] [2]])
# reduces given term to its normal form
β* y [[rec]] ⧗ Meta → Meta
rec 0 case-idx case-app case-abs
case-idx idx
case-app [[(3 1) case-idx case-app case-abs]]
case-idx [app (idx 0) (4 1)]
case-app [[app (app 1 0) (5 2)]]
case-abs [4 (σ 0 1 (+0u))]
case-abs [abs (2 0)]
:test (β* `0) (`0)
:test (β* `[0]) (`[0])
:test (β* `([0] [0])) (`[0])
:test (β* `(++(+2u))) (`(+3u))
# single-pass beta reduction
β y [[rec]] ⧗ Meta → Meta
rec 0 case-idx case-app case-abs
case-idx idx
case-app [[abs? 1 redex normal]]
redex σ (abs! 1) 0 (+0u)
normal app 1 (3 0)
case-abs [abs (2 0)]
case-ass abs ∘ 2
:test (β `0) (`0)
:test (β `[0]) (`[0])
:test (β `([0] [0])) (`[0])
# set lhs of meta application
lhs [[1 i [[[[1 4 2]]]]]] ⧗ Meta → Meta → Meta
:test (lhs `(1 0) `0) (`(0 0))
# set rhs of meta application
rhs [[1 i [[[[1 3 4]]]]]] ⧗ Meta → Meta → Meta
:test (rhs `(0 1) `0) (`(0 0))
# swap terms of meta application
swap [0 i [[[[1 2 3]]]]] ⧗ Meta → Meta
:test (swap `(1 0)) (`(0 1))
# applies a function to the body of a meta term
map [[0 case-idx case-app case-abs]] ⧗ (Meta → Meta) → Meta → Meta
case-idx [idx (2 0)]
case-app [[app (3 1 0)]]
case-abs [abs (2 0)]
:test (map swap `[0 1]) (`[1 0])
:test (map inc `0) (`1)
:test (map (map inc) `[0]) (`[1])
# ternary encoding of meta terms
# inspired by Helmut Brandl's and Steve Goguen's work
# uses ternary for lower space complexity
encode fold idx-cb app-cb abs-cb ⧗ Meta → Number
idx-cb (pair-ternary (+0)) ∘ unary-to-ternary
app-cb (pair-ternary (+1)) ∘∘ pair-ternary
abs-cb pair-ternary (+2)
:test (ternary-to-unary (encode `0)) ((+0u))
:test (ternary-to-unary (encode `1)) ((+1u))
:test (ternary-to-unary (encode `(0 0))) ((+3u))
:test (ternary-to-unary (encode `[1])) ((+7u))
:test (ternary-to-unary (encode `[0])) ((+8u))
# decode ternary encoding back to meta term
# TODO: improve performance (maybe with different unpairing function or better sqrt)
decode z [[unpair-ternary 0 go]] ⧗ Number → Meta
go [[(case-idx : (case-app : {}case-abs)) !! 1 0]]
case-idx idx ∘ ternary-to-unary
case-app [unpair-ternary 0 (ψ app 4)]
case-abs abs ∘ 3
:test (decode (+0)) (`0)
:test (decode (+1)) (`1)
:test (decode (+3)) (`(0 0))
:test (decode (+7)) (`[1])
:test (decode (+8)) (`[0])
|