aboutsummaryrefslogtreecommitdiffhomepage
path: root/std/Tree/Finger.bruijn
blob: 4ded9ce06d2cb32baa93d71639b9cd1503e260f5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# MIT License, Copyright (c) 2024 Marvin Borner
# finger tree implementation, great for sequences / searches
# originally by R. Hinze, R. Paterson "Finger Trees: a simple general-purpose data structure"
# efficient translation to LC by me

:import std/Combinator .
:import std/List L
:import std/Number N

# === Node ===
# Scott-style tagged union, 2 tags

# (Node a) = (Node 2 a a) | (Node3 a a a)

# tagged two elements (tag 0)
node2 [[[[0 3 2]]]] ⧗ a → a → (Node a)

# tagged three elements (tag 1)
node3 [[[[[1 4 3 2]]]]] ⧗ a → a → a → (Node a)

foldr-node [[[0 case-node3 case-node2]]] ⧗ (a → b → b) → b → (Node a) → b
	case-node2 [[4 1 (4 0 3)]]
	case-node3 [[[5 2 (5 1 (5 0 4))]]]

:test (foldr-node L.cons L.empty (node2 'a' 'b')) ("ab")
:test (foldr-node L.cons L.empty (node3 'a' 'b' 'c')) ("abc")

foldl-node [[[0 case-node3 case-node2]]] ⧗ (b → a → b) → b → (Node a) → b
	case-node2 [[4 (4 3 1) 0]]
	case-node3 [[[5 (5 (5 4 2) 1) 0]]]

:test (foldl-node \L.cons L.empty (node2 'a' 'b')) ("ba")
:test (foldl-node \L.cons L.empty (node3 'a' 'b' 'c')) ("cba")

# === Digit ===
# Scott-style tagged union with constant cons/snoc, 4 tags
# alternative would be Parigot lists, but size check requires y-rec

# tagged single element (tag 0)
one [[[[[0 4]]]]] ⧗ a → (Digit a)

{}‣ one

# tagged two elements (tag 1)
two [[[[[[1 5 4]]]]]] ⧗ a → a → (Digit a)

# tagged three elements (tag 2)
three [[[[[[[2 6 5 4]]]]]]] ⧗ a → a → a → (Digit a)

# tagged four elements (tag 3)
four [[[[[[[[3 7 6 5 4]]]]]]]] ⧗ a → a → a → a → (Digit a)

four? [0 [[[[k]]]] [[[ki]]] [[ki]] [ki]] ⧗ (Digit a) → Boolean

:test (four? (one i)) (ki)
:test (four? (two i i)) (ki)
:test (four? (three i i i)) (ki)
:test (four? (four i i i i)) (k)

# returns first element of digit
digit-head [0 [[[[3]]]] [[[2]]] [[1]] [0]] ⧗ (Digit a) → a

:test (digit-head (one i)) (i)
:test (digit-head (two i k)) (i)
:test (digit-head (three i k k)) (i)
:test (digit-head (four i k k k)) (i)

# returns trailing elemente of digit
digit-tail [0 [three] [two] [one] Ω] ⧗ (Digit a) → (Digit a)

:test (digit-tail (two i k)) (one k)
:test (digit-tail (three i k k)) (two k k)
:test (digit-tail (four i k k k)) (three k k k)

foldr-digit [[[0 case-four case-three case-two case-one]]] ⧗ (a → b → b) → b → (Digit a) → b
	case-four [[[[6 3 (6 2 (6 1 (6 0 5)))]]]]
	case-three [[[5 2 (5 1 (5 0 4))]]]
	case-two [[4 1 (4 0 3)]]
	case-one [3 0 2]

:test (foldr-digit L.cons L.empty (one 'a')) ("a")
:test (foldr-digit L.cons L.empty (two 'a' 'b')) ("ab")
:test (foldr-digit L.cons L.empty (three 'a' 'b' 'c')) ("abc")
:test (foldr-digit L.cons L.empty (four 'a' 'b' 'c' 'd')) ("abcd")

foldl-digit [[[0 case-four case-three case-two case-one]]] ⧗ (a → b → b) → b → (Digit a) → b
	case-four [[[[6 (6 (6 (6 5 3) 2) 1) 0]]]]
	case-three [[[5 (5 (5 4 2) 1) 0]]]
	case-two [[4 (4 3 1) 0]]
	case-one [3 2 0]

:test (foldl-digit \L.cons L.empty (one 'a')) ("a")
:test (foldl-digit \L.cons L.empty (two 'a' 'b')) ("ba")
:test (foldl-digit \L.cons L.empty (three 'a' 'b' 'c')) ("cba")
:test (foldl-digit \L.cons L.empty (four 'a' 'b' 'c' 'd')) ("dcba")

# adds element to digit (and updates its tag)
cons [[0 case-four case-three case-two case-one]] ⧗ a → (Digit a) → (Digit a)
	case-four Ω
	case-three [[[[[[[3 8 6 5 4]]]]]]]
	case-two [[[[[[2 7 5 4]]]]]]
	case-one [[[[[1 6 4]]]]]

…:… cons

:test ('a' : (one 'b')) (two 'a' 'b')
:test ('a' : (two 'b' 'c')) (three 'a' 'b' 'c')
:test ('a' : (three 'b' 'c' 'd')) (four 'a' 'b' 'c' 'd')

# adds element to digit (and updates its tag)
snoc [[1 case-four case-three case-two case-one]] ⧗ (Digit a) → a → (Digit a)
	case-four Ω
	case-three [[[[[[[3 6 5 4 7]]]]]]]
	case-two [[[[[[2 5 4 6]]]]]]
	case-one [[[[[1 4 5]]]]]

…;… snoc

:test ((one 'a') ; 'b') (two 'a' 'b')
:test ((two 'a' 'b') ; 'c') (three 'a' 'b' 'c')
:test ((three 'a' 'b' 'c') ; 'd') (four 'a' 'b' 'c' 'd')

# removes redundant abstractions
↓₃‣ [0 i i i]

# === Tree ===
# Scott-style tagged union, 3 tags

# (FingerTree a) = Empty
#                | (Single a)
#                | (Deep (Digit a) (FingerTree (Node a)) (Digit a))

# empty tree (tag 0)
empty [[[0]]] ⧗ (FingerTree a)

# single tree (tag 1)
single [[[[1 3]]]] ⧗ a → (FingerTree a)

# deep tree (tag 2)
deep [[[[[[2 5 4 3]]]]]] ⧗ (Digit a) → (FingerTree (Node a)) → (Digit a) → (FingerTree a)

foldr-tree z [[[[0 case-deep case-single case-empty]]]] ⧗ (a → b → b) → b → (FingerTree a) → b
	case-deep [[[foldr-digit 5 (6 \(foldr-node 5) (foldr-digit 5 4 0) 1) 2]]]
	case-single [3 0 2]
	case-empty 1

foldl-tree z [[[[0 case-deep case-single case-empty]]]] ⧗ (b → a → b) → b → (FingerTree a) → b
	case-deep [[[foldl-digit 5 (6 (foldl-node 5) (foldl-digit 5 4 2) 1) 0]]]
	case-single [3 2 0]
	case-empty 1

# adds element to the left side of a finger tree
insert-left z [[[0 case-deep case-single case-empty]]] ⧗ a → (FingerTree a) → (FingerTree a)
	case-deep [[[four? 2 overflow append]]]
		overflow deep (two 4 ↓₃(2 [[[[3]]]])) (5 ↓₃(2 [node3]) 1) 0
		append deep (4 : 2) 1 0
	case-single [deep {}2 empty {}0]
	case-empty single 1

…◁… insert-left

:test ('a' ◁ empty) (single 'a')
:test ('a' ◁ (single 'b')) (deep (one 'a') empty (one 'b'))
:test ('a' ◁ (deep (three 'b' 'c' 'd') empty (one 'a'))) (deep (four 'a' 'b' 'c' 'd') empty (one 'a'))
:test ('a' ◁ (deep (four 'b' 'c' 'd' 'e') empty (one 'a'))) (deep (two 'a' 'b') (single (node3 'c' 'd' 'e')) (one 'a'))

……◁′… [\(0 insert-left)] ⧗ (Foldr s) → (s a) → (FingerTree a) → (FingerTree a)

:test (L.foldr "abcdefg" ◁′ empty) (deep (three 'a' 'b' 'c') (single (node3 'd' 'e' 'f')) (one 'g'))

# adds element to the right side of a finger tree
insert-right z [[[1 case-deep case-single case-empty]]] ⧗ (FingerTree a) → a → (FingerTree a)
	case-deep [[[four? 0 overflow append]]]
		overflow deep 2 (5 1 ↓₃(0 [[[[node3 3 2 1]]]])) (two ↓₃(0 [[[[0]]]]) 3)
		append deep 2 1 (0 ; 3)
	case-single [deep {}0 empty {}1]
	case-empty single 0

…▷… insert-right

:test (empty ▷ 'a') (single 'a')
:test ((single 'a') ▷ 'b') (deep (one 'a') empty (one 'b'))
:test ((deep (one 'a') empty (three 'a' 'b' 'c')) ▷ 'd') (deep (one 'a') empty (four 'a' 'b' 'c' 'd'))
:test ((deep (one 'a') empty (four 'e' 'd' 'c' 'b')) ▷ 'a') (deep (one 'a') (single (node3 'e' 'd' 'c')) (two 'b' 'a'))

……▷′… &insert-right ⧗ (Foldl s) → (FingerTree a) → (s a) → (FingerTree a)

:test (L.foldl empty ▷′ "abcdefg") (deep (one 'a') (single (node3 'b' 'c' 'd')) (three 'e' 'f' 'g'))

# === Conversions ===

# converts a list to a finger tree
list→tree [L.foldr 0 ◁′ empty] ⧗ (List a) → (FingerTree a)

:test (list→tree "a") (single 'a')
:test (list→tree "abcdefu") (deep (three 'a' 'b' 'c') (single (node3 'd' 'e' 'f')) (one 'u'))
:test (foldl-tree \L.cons L.empty (list→tree "abcdefghijklmnopqrstuvwxyz")) ("zyxwvutsrqponmlkjihgfedcba")

# converts a digit to a finger tree
digit→tree [foldr-digit 0 ◁′ empty] ⧗ (Digit a) → (FingerTree a)

# converts a digit to a list
digit→list foldr-digit L.cons L.empty ⧗ (Digit a) → (List a)

# converts a node to a digit
node→digit [0 three two] ⧗ (Node a) → (Digit a)

:test (node→digit (node2 'a' 'b')) (two 'a' 'b')
:test (node→digit (node3 'a' 'b' 'c')) (three 'a' 'b' 'c')

# converts a finger tree to a list
tree→list foldr-tree L.cons L.empty ⧗ (FingerTree a) → (List a)

:test (tree→list (list→tree "a")) ("a")
:test (tree→list (list→tree "in ulm, um ulm und um ulm herum")) ("in ulm, um ulm und um ulm herum")

# === View ===

# (ViewL a) = Empty | Pair a (FingerTree a)

# constructs a view of the tree
# basically shifts the leftmost element into a pair
view-left z [[0 case-deep case-single case-empty]] ⧗ (FingerTree a) → (ViewL a)
	case-deep [[[L.cons (digit-head 2) (2 [deep ∘∘∘ three] [deep ∘∘ two] [deep ∘ one] [deep-left] 1 0)]]]
		deep-left [[7 1 [[[case-cons]]] case-nil]] ⧗ (FingerTree (Node a)) → (Digit a) → (FingerTree a)
			case-cons deep (node→digit 2) 1 3
			case-nil digit→tree 0
	case-single [L.cons 0 empty]
	case-empty L.empty

:test (view-left empty) (L.empty)
:test (view-left (single 'a')) (L.cons 'a' empty)
:test (view-left (deep (two 'a' 'b') empty (one 'c'))) (L.cons 'a' (deep (one 'b') empty (one 'c')))
:test (view-left (deep (one 'a') empty (two 'b' 'c'))) (L.cons 'a' (deep (one 'b') empty (one 'c')))
:test (view-left (deep (one 'a') (single (node3 'b' 'c' 'd')) (one 'e'))) (L.cons 'a' (deep (three 'b' 'c' 'd') empty (one 'e')))

# returns true if finger tree is empty
empty? [view-left 0 [[[ki]]] k] ⧗ (FingerTree a) → Boolean

:test (empty? empty) (k)
:test (empty? (single 'a')) (ki)
:test (empty? (deep (one 'a') empty (one 'b'))) (ki)

# returns left head of finger tree
head-left L.head ∘ view-left ⧗ (FingerTree a) → a

:test (head-left (list→tree "abcdefg")) ('a')

# returns left tail of finger tree
tail-left L.tail ∘ view-left ⧗ (FingerTree a) → (FingerTree a)

# TODO: implement viewR (mirror image)

# === Concatenation ===

# WARNING: this will only work for lengths with factor 2 or 3
# case-+ is also not really relevant I think
list→nodes [z [[[rec]]] 0 L.∀0] ⧗ (List a) → (List (Node a))
	rec N.eq? 0 (+2) case-2 (N.eq? 0 (+3) case-3 (N.eq? 0 (+4) case-4 case-+))
		case-2 1 [[L.{}(node2 1 L.^0)]]
		case-3 1 [[0 [[L.{}(node3 3 1 L.^0)]]]]
		case-4 1 [[0 [[0 [[L.cons (node2 5 3) L.{}(node2 1 L.^0)]]]]]]
		case-+ 1 [[0 [[0 [[L.cons (node3 5 3 1) (8 0 (N.sub 6 (+3)))]]]]]]

:test (list→nodes "ab") (L.{}(node2 'a' 'b'))
:test (list→nodes "abc") (L.{}(node3 'a' 'b' 'c'))
:test (list→nodes "abcd") (L.cons (node2 'a' 'b') L.{}(node2 'c' 'd'))
:test (list→nodes "abcde") (L.cons (node3 'a' 'b' 'c') L.{}(node2 'd' 'e'))

append3 z [[[[2 case-deep case-single case-empty]]]] ⧗ (FingerTree a) → (List a) → (FingerTree a) → (FingerTree a)
	case-deep [[[3 deep-deep deep-single deep-empty]]]
		deep-deep [[[deep 5 (9 4 new-list 1) 0]]]
			new-list list→nodes (L.append (L.append (digit→list 3) 7) (digit→list 2))
		deep-single [(L.foldl 6 ▷′ 5) ▷ 0]
		deep-empty 5
	case-single [1 single-deep single-single single-empty]
		single-deep [[[3 ◁ (L.foldr 5 ◁′ 4)]]]
		single-single [1 ◁ (L.foldr 3 ◁′ 2)]
		single-empty 3
	case-empty 0

append [[append3 1 L.empty 0]] ⧗ (FingerTree a) → (FingerTree a) → (FingerTree a)

…++… append

:test (tree→list ((list→tree "a") ++ (list→tree "b"))) ("ab")
:test (tree→list ((list→tree "abcdefg") ++ (list→tree "hijklmnop"))) ("abcdefghijklmnop")
:test (tree→list ((list→tree "abcdefghijklmnopqrstuvwxyz1234") ++ (list→tree "abcdefghijklmopqrstuvwxyz"))) ("abcdefghijklmnopqrstuvwxyz1234abcdefghijklmopqrstuvwxyz")

# TODO: annotations, measurement, splitting, random-access
#   - annotations will require some modifications (more abstractions)
# TODO: new modules: sequence, pqueue