aboutsummaryrefslogtreecommitdiff
path: root/src/term.c
blob: a2f361bb641e43b12c6679755c8976e257ddbcdd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// Copyright (c) 2023, Marvin Borner <dev@marvinborner.de>
// SPDX-License-Identifier: MIT

#include <stdlib.h>
#include <stdio.h>
#include <assert.h>

#include <log.h>
#include <term.h>
#include <map.h>

struct term *term_new(term_type_t type, hash_t hash, size_t depth)
{
	struct term *term = malloc(sizeof(*term));
	if (!term)
		fatal("out of memory!\n");
	term->type = type;
	term->refs = 1;
	term->hash = hash;
	term->depth = depth;
	term->parents = hashmap_new(sizeof(struct term *), 0, 0);
	return term;
}

void term_print(struct term *term)
{
	switch (term->type) {
	case ABS:
		fprintf(stderr, "[");
		term_print(term->u.abs.term);
		fprintf(stderr, "]");
		break;
	case APP:
		fprintf(stderr, "(");
		term_print(term->u.app.lhs);
		fprintf(stderr, " ");
		term_print(term->u.app.rhs);
		fprintf(stderr, ")");
		break;
	case VAR:
		fprintf(stderr, "%ld", term->u.var.index);
		break;
	default:
		fatal("invalid type %d\n", term->type);
	}
}

struct term *term_rehash_abs(struct term *head, struct term *term)
{
	hash_t res =
		hash((uint8_t *)&head->type, sizeof(head->type), term->hash);

	if (res == head->hash)
		return head;

	struct term *match = map_get(map_all_terms(), res);
	if (match) { // already exists
		return match;
	} else { // create new
		struct term *new = term_new(ABS, res, head->depth);
		new->u.abs.term = term;
		map_set(map_all_terms(), new);
		map_set(term->parents, new);
		return new;
	}
}

struct term *term_rehash_app(struct term *head, struct term *lhs,
			     struct term *rhs)
{
	hash_t res =
		hash((uint8_t *)&head->type, sizeof(head->type), lhs->hash);
	res = hash((uint8_t *)&res, sizeof(res), rhs->hash);

	if (res == head->hash)
		return head;

	struct term *match = map_get(map_all_terms(), res);
	if (match) { // already exists
		return match;
	} else { // create new
		struct term *new = term_new(APP, res, head->depth);
		new->u.app.lhs = lhs;
		new->u.app.rhs = rhs;
		map_set(map_all_terms(), new);
		map_set(lhs->parents, new);
		map_set(rhs->parents, new);
		return new;
	}
}

struct term *term_rehash_var(struct term *head, size_t index)
{
	hash_t res = hash((uint8_t *)&head->type, sizeof(head->type), index);

	if (res == head->hash)
		return head;

	struct term *match = map_get(map_all_terms(), res);
	if (match) { // already exists
		return match;
	} else { // create new
		struct term *new = term_new(APP, res, head->depth);
		new->u.var.index = index;
		map_set(map_all_terms(), new);
		return new;
	}
}

struct term *term_rehash(struct term *term)
{
	if (term->type == ABS) {
		return term_rehash_abs(term, term->u.abs.term);
	} else if (term->type == APP) {
		return term_rehash_app(term, term->u.app.lhs, term->u.app.rhs);
	} else if (term->type == VAR) {
		return term_rehash_var(term, term->u.var.index);
	}
	return term;
}

// returns the direct parent
void term_rehash_parents(struct term *term)
{
	if (!term->parents)
		return;

	// we need to convert the parent hashmap to a list
	// so we can replace the rehashed elements while looping
	// TODO: Abstract list lib?
	struct parent_list {
		struct term *term;
		struct parent_list *next;
	};
	struct parent_list *parents = calloc(sizeof(*parents), 1);

	size_t iter = 0;
	void *iter_val;
	while (hashmap_iter(term->parents, &iter, &iter_val)) {
		struct parent_list *new = malloc(sizeof(*parents));
		new->term = *(struct term **)iter_val;
		new->next = parents;
		parents = new;
	}

	struct parent_list *iterator = parents;
	while (iterator && iterator->term) {
		struct term *parent = iterator->term;
		hash_t previous = parent->hash;
		struct term *new = term_rehash(parent);
		if (previous == new->hash) {
			struct parent_list *next = iterator->next;
			free(iterator);
			iterator = next;
		}

		map_delete(term->parents, parent);
		map_set(term->parents, new);

		term_rehash_parents(new);

		struct parent_list *next = iterator->next;
		free(iterator);
		iterator = next;
	}
}

void term_refer_head(struct term *term, size_t depth)
{
	term->refs++;
	if (depth < term->depth) // lower depths are more important
		term->depth = depth;
}

void term_refer(struct term *term, size_t depth)
{
	if (term->type == ABS) {
		term_refer(term->u.abs.term, depth + 1);
	} else if (term->type == APP) {
		term_refer(term->u.app.lhs, depth + 1);
		term_refer(term->u.app.rhs, depth + 1);
	}

	term_refer_head(term, depth);
}

void term_deref_head(struct term *term)
{
	term->refs--;
	if (term->refs == 0) {
		map_delete(map_all_terms(), term);
		map_destroy(term->parents);
		free(term);
	}
}

void term_deref(struct term *term)
{
	if (term->type == ABS) {
		term_deref(term->u.abs.term);
	} else if (term->type == APP) {
		term_deref(term->u.app.lhs);
		term_deref(term->u.app.rhs);
	}

	term_deref_head(term);
}