Begin { (show 'h1 "LOGIC") (show 'h2 "TRUE/FALSE") (show 'bool true) (show 'bool false) (show 'h2 "NOT") (show 'bool (not true)) (show 'bool (not false)) (show 'h2 "AND") (show 'bool ((and true) true)) (show 'bool ((and true) false)) (show 'bool ((and false) true)) (show 'bool ((and false) false)) (show 'h2 "OR") (show 'bool ((or true) true)) (show 'bool ((or true) false)) (show 'bool ((or false) true)) (show 'bool ((or false) false)) (show 'h1 "CHURCH NUMERALS") (show 'h2 "ZERO/SUCC") (show 'nat zero) (show 'nat one) (show 'nat two) (show 'nat three) (show 'h2 "PRED") (show 'nat (pred zero)) (show 'nat (pred one)) (show 'nat (pred two)) (show 'nat (pred three)) (show 'h2 "ADD") (show 'nat ((add three) two)) (show 'h2 "MUL") (show 'nat ((mul zero) two)) (show 'nat ((mul two) zero)) (show 'nat ((mul three) two)) (show 'h2 "FACT") (show 'nat (fact zero)) (show 'nat (fact one)) (show 'nat (fact two)) (show 'nat (fact three)) (show 'nat (fact four)) (show 'nat (fact five)) (show 'h2 "FIB") (show 'nat (fib zero)) (show 'nat (fib one)) (show 'nat (fib two)) (show 'nat (fib three)) (show 'nat (fib four)) (show 'nat (fib five)) } Where Define (show class x) Open Package "stdio" { :print_line } Open Package "z" { :Infix + :show show_int } In Begin Match class { | 'h1 (print_line "") (print_line x) (print_line "---") | 'h2 (print_line "") (print_line x) | 'bool (print_line ((x "t") "f")) | 'nat Define (increment x) [x + 1] (print_line (show_int ((x increment) 0))) } Let fib Define [[x] -> f] (f x) In Define ((f fib) n) Define (case_small _) one Define (case_big _) ((add (fib (pred n))) (fib (pred (pred n)))) In [{} -> (((is_zero (pred n)) case_small) case_big)] In (z f) Let fact Define [[x] -> f] (f x) In Define ((f fact) n) Define (case_zero _) one Define (case_nonzero _) ((mul (fact (pred n))) n) In [{} -> (((is_zero n) case_zero) case_nonzero)] In (z f) Where Define (not b) ((b false) true) Define ((and b1) b2) ((b1 b2) false) Define ((or b1) b2) ((b1 true) b2) Define ((mul a) b) Define ([[g] << f] x) (g (f x)) In [a << b] Let add Let BITTER Func a Func b Func f Func x ((a f) ((b f) x)) Let SWEET Define ([[g] << f] x) (g (f x)) In Define (((add a) b) f) [(a f) << (b f)] In add In BITTER Define (is_zero n) ((n (const false)) true) Define (((pred n) f) x) Define ((compose g) h) (h (g f)) In (((n compose) (const x)) id) Let one (succ zero) Let two (succ (succ zero)) Let three (succ (succ (succ zero))) Let four (succ (succ (succ (succ zero)))) Let five (succ (succ (succ (succ (succ zero))))) Where Let z Let BITTER Func f (Func x (f Func v ((x x) v)) Func x (f Func v ((x x) v))) Let SWEET Define (z f) Define (x x) Define (self v) ((x x) v) In (f self) In (x x) In z Let SWEETEST Define (z f) Unfold {} Define (self v) ((Fold) v) In (f self) In z In SWEETEST Define ((true x) y) x Define ((false x) y) y Define ((zero f) x) x Define (((succ n) f) x) (f ((n f) x)) Define ((const x) u) x Define (id x) x