# LOGIC _true = ->(x) { ->(y) { x } } _false = ->(x) { ->(y) { y } } _not = ->(b) { b[_false][_true] } _and = ->(b1) { ->(b2) { b1[b2][_false] } } _or = ->(b1) { ->(b2) { b1[_true][b2] } } # CHURCH NUMERALS _zero = ->(f) { ->(x) { x } } _succ = ->(n) { ->(f) { ->(x) { f[n[f][x]] } } } _pred = ->(n) { ->(f) { ->(x) { n[->(g) { ->(h) { h[g[f]] } }][->(u) { x }][->(a) { a }] } } } _one = _succ[_zero] # HELPERS - not pure lambda calculus def read_bool(b) puts b["t"]["f"] end def read_church(n) puts n[->(x) { x + 1 }][0] end # EXAMPLES puts "LOGIC" puts "---------------" puts "TRUE/FALSE" read_bool(_true) # t read_bool(_false) # f puts "NOT" read_bool(_not[_true]) # f read_bool(_not[_false]) # t puts "AND" read_bool(_and[_true][_true]) # t read_bool(_and[_true][_false]) # f read_bool(_and[_false][_true]) # f read_bool(_and[_false][_false]) # f puts "OR" read_bool(_or[_true][_true]) # t read_bool(_or[_true][_false]) # t read_bool(_or[_false][_true]) # t read_bool(_or[_false][_false]) # f puts "\nCHURCH NUMERALS" puts "---------------" puts "ZERO/SUCC" read_church(_zero) # 0 read_church(_one) # 1 read_church(_succ[_one]) # 2 read_church(_succ[_succ[_one]]) # 3 puts "PRED" read_church(_pred[_one]) # 0 read_church(_pred[_succ[_one]]) # 1 read_church(_pred[_succ[_succ[_one]]]) # 2