let MAXRES = 2; let errors = []; const error = (s) => { clearCache(); errors.push(s); console.error(s); window.error.innerText = "invalid term: " + errors.toReversed().join(", "); }; const clearErrors = () => { errors = []; window.error.innerText = ""; }; /* caching */ let doCache = true; const allHashes = {}; const incCache = {}; const substCache = {}; const whnfCache = {}; const snfCache = {}; const caches = [allHashes, incCache, substCache, whnfCache, snfCache]; const clearCache = () => { caches.forEach((cache) => Object.keys(cache).forEach((key) => { delete cache[key]; }), ); }; /* canvas */ const WHITE = 0; const BLACK = 1; const UNKNOWN = 2; const drawAt = (worker, x, y, color) => { worker.postMessage({ drawAt: [ color == WHITE ? "white" : color == BLACK ? "black" : "#cccccc", x[0], y[0], x[1] - x[0], y[1] - y[0], ], }); }; const drawScreen = (worker, ctxs, colors) => { ctxs = ctxs.map((ctx) => [ ctx.x[0], ctx.y[0], ctx.x[1] - ctx.x[0], ctx.y[1] - ctx.y[0], ]); colors = colors.map((color) => color == WHITE ? "white" : color == BLACK ? "black" : "#cccccc", ); worker.postMessage({ drawScreen: [colors, ctxs] }); }; /* lambda calculus */ // --- // `return null` and `if (foo === null) return null` are the monads of JavaScript!! // --- const hash = (s) => { let h = 0; for (let i = 0; i < s.length; i++) { const chr = s.charCodeAt(i); h = (h << 5) - h + chr; h |= 0; } while (h in allHashes && allHashes[h] !== s) { console.warn("hash collision"); h += 1; } allHashes[h] = s; return h; }; const abs = (body) => { if (body === null) return null; const t = { type: "abs", body }; t.hash = hash("abs" + body.hash); return t; }; const app = (left) => (right) => { if (left === null || right === null) return null; const t = { type: "app", left, right }; t.hash = hash("app" + left.hash + right.hash); return t; }; const idx = (idx) => { if (idx === null) return null; const t = { type: "idx", idx }; t.hash = hash("idx" + idx); return t; }; const def = (name) => { const t = { type: "def", name }; t.hash = hash("def" + name); return t; }; const decodeBase64 = (enc) => { const dec = atob(enc); let bits = ""; for (let i = 0; i < dec.length; i++) { const byte = dec.charCodeAt(i); for (let j = 7; j >= 0; j--) { const bit = (byte >> j) & 1; bits += bit === 1 ? "1" : "0"; } } return bits; }; const encodeBase64 = (t) => { const bin = (_t) => { if (_t === null) return []; switch (_t.type) { case "abs": return [...[0, 0], ...bin(_t.body)]; case "app": return [...[0, 1], ...bin(_t.left), ...bin(_t.right)]; case "idx": let s = []; for (let i = 0; i < _t.idx + 1; i++) s.push(1); s.push(0); return s; case "def": error("unexpected def"); return []; } }; const bits = bin(t); while (bits.length % 8 !== 0) bits.push(0); let res = ""; for (let i = 0; i < bits.length; i += 8) { let byte = 0; for (let j = 0; j < 8; j++) if (bits[i + j]) byte |= 1 << (7 - j); res += String.fromCharCode(byte); } return btoa(res); }; const size = (t) => { if (t === null) return 0; switch (t.type) { case "abs": return 2 + size(t.body); case "app": return 2 + size(t.left) + size(t.right); case "idx": return t.idx + 2; case "def": error("unexpected def"); return 0; } }; const show = (t) => { if (t === null) return ""; switch (t.type) { case "abs": return `\\${show(t.body)}`; // return `[${show(t.body)}]`; case "app": return `(${show(t.left)} ${show(t.right)})`; case "idx": return `${t.idx}`; case "def": return t.name; } }; const isOpen = (t) => { const go = (t, d) => { if (t === null) return true; switch (t.type) { case "abs": return go(t.body, d + 1); case "app": return go(t.left, d) || go(t.right, d); case "idx": return t.idx >= d; case "def": return false; } }; return go(t, 0); }; const parseLam = (str) => { // default to left-associative application const folded = (s) => { const init = parseLam(s); if (!init[1] || ")]".includes(init[1][0])) return init; const go = (acc, rst) => { const parsed = parseLam(rst); const chain = app(acc)(parsed[0]); if (!parsed[1] || ")]".includes(parsed[1][0])) return [chain, parsed[1]]; return go(chain, parsed[1]); }; return go(init[0], init[1]); }; if (!str) { error("in parseLam"); return [{}, ""]; } const head = str[0]; const tail = str.slice(1); switch (head) { case "λ": case "\\": case "[": // bruijn const [body, _tail] = parseLam(tail.trim()); return [ abs(body), head == "[" ? _tail.trim().slice(1).trim() : _tail.trim(), ]; case "(": const [chain, _tail1] = folded(tail.trim()); return [chain, _tail1.trim().slice(1).trim()]; case ")": case "]": error("in parseLam"); return []; default: if (head == " ") return folded(tail); if (head >= "a" && head <= "z") { // substitution let name = ""; while (str && str[0] >= "a" && str[0] <= "z") { name += str[0]; str = str.slice(1); } return [def(name), str.trim()]; } else { // de Bruijn index let num = ""; while (str && str[0] >= "0" && str[0] <= "9") { num += str[0]; str = str.slice(1); } return [idx(parseInt(num)), str.trim()]; } } }; const parseBLC = (str) => { if (!str) { error("in parseBLC"); return [{}, ""]; } if (str.slice(0, 2) === "00") { const [body, tail] = parseBLC(str.slice(2)); return [abs(body), tail]; } if (str.slice(0, 2) === "01") { const [left, tail1] = parseBLC(str.slice(2)); const [right, tail2] = parseBLC(tail1); return [app(left)(right), tail2]; } const cnt = str.slice(1).indexOf("0"); return [idx(cnt), str.slice(cnt + 2)]; }; const parseTerm = (str) => { const t = /^[01]+$/.test(str) ? parseBLC(str)[0] : parseLam(str)[0]; if (isOpen(t)) { error("is open"); return null; } else { return t; } }; const substDef = (i, t, n) => { switch (t.type) { case "idx": return t; case "app": return app(substDef(i, t.left, n))(substDef(i, t.right, n)); case "abs": return abs(substDef(i + 1, t.body, n)); case "def": return t.name === n ? idx(i) : t; } }; const resolveTerm = (_t, defs) => { if (_t === null) return null; let final = _t; for (let def of defs.reverse()) final = app(abs(substDef(0, final, def[0])))(def[1]); return final; }; const parse = (str) => { const defs = []; let t; str .trim() .split(/\r?\n/) .every((line) => { if (line.startsWith("--") || line.length === 0) return true; if (!line.includes("=")) { t = parseTerm(line); return false; } [n, _t] = line.split("="); defs.push([n.trim(), parseTerm(_t.trim())]); return true; }); t = resolveTerm(t, defs); return t; }; /* lambda screen */ // [[1]]=w, [[0]]=b, other=g const toColor = (t) => { if (t.type === "abs" && t.body.type === "abs" && t.body.body.type === "idx") return t.body.body.idx === 1 ? WHITE : t.body.body.idx === 0 ? BLACK : UNKNOWN; return UNKNOWN; }; // [((((0 tl) tr) bl) br) ...] // (or more, as long as n is perfect square) const seemsScreeny = (t) => { if (t.type !== "abs") return false; t = t.body; let d = 0; while ((d++, t.type === "app")) t = t.left; return t.type === "idx" && t.idx === 0 ? d - 1 : false; }; const getSubScreens = (t) => { if (t.type !== "abs") return false; t = t.body; let ts = []; while (t.type === "app" && ts.unshift(t)) t = t.left; return ts; }; const clearScreen = (worker) => { worker.postMessage({ clear: true }); }; /* beta reduction */ let MAX = 0; let depth = 0; let canceled = false; const cancelReduction = () => { if (depth++ > MAX && !canceled) { MAX **= 1.3; if ( !confirm( `This takes awfully long (${depth} steps!). The reduction potentially won't converge to a valid screen (or at all!). Do you want to continue?\nWarning: This might crash your browser!`, ) ) { canceled = true; clearCache(); return true; } } return canceled; }; const inc = (i, t) => { if (cancelReduction() || t === null) { error("in inc"); return null; } const h = hash("" + i + t.hash); if (doCache && h in incCache) return incCache[h]; let newT; switch (t.type) { case "idx": newT = idx(i <= t.idx ? t.idx + 1 : t.idx); break; case "app": newT = app(inc(i, t.left))(inc(i, t.right)); break; case "abs": newT = abs(inc(i + 1, t.body)); break; case "def": error("unexpected def"); return null; } incCache[h] = newT; return newT; }; const subst = (i, t, s) => { if (cancelReduction() || t === null) { error("in subst"); return null; } const h = hash("" + i + t.hash + s.hash); if (doCache && h in substCache) return substCache[h]; let newT; switch (t.type) { case "idx": newT = i == t.idx ? s : idx(t.idx > i ? t.idx - 1 : t.idx); break; case "app": newT = app(subst(i, t.left, s))(subst(i, t.right, s)); break; case "abs": newT = abs(subst(i + 1, t.body, inc(0, s))); break; case "def": error("unexpected def"); return null; } substCache[h] = newT; return newT; }; // guaranteed normal form // only use if sure that t is not a (potentially diverging) screen // TODO: this assumes laziness LOL (OR DOES IT) const gnf = (t) => { if (cancelReduction() || t === null) { error("in gnf"); return null; } switch (t.type) { case "app": const _left = gnf(t.left); if (_left === null) return null; return _left.type === "abs" ? gnf(subst(0, _left.body, t.right)) : app(_left)(gnf(t.right)); case "abs": return abs(gnf(t.body)); case "def": error("unexpected def"); return null; default: return t; } }; // weak head normal form const whnf = (t) => { if (cancelReduction() || t === null) { error("in whnf"); return null; } if (doCache && t.hash in whnfCache) return whnfCache[t.hash]; let newT; switch (t.type) { case "app": const _left = whnf(t.left); if (_left === null) return null; newT = _left.type === "abs" ? whnf(subst(0, _left.body, t.right)) : app(_left)(t.right); break; case "def": error("unexpected def"); return null; default: newT = t; break; } whnfCache[t.hash] = newT; return newT; }; // screen normal form // one of [((((0 tl) tr) bl) br) ...], [[0]], [[1]] // TODO: Is this form of caching fundamentally wrong? (incongruences after subst or idx shifts!?) // Does this only work accidentally because of WHNF, deliberate symmetry and closed terms or sth? const snf = (_t) => { if (doCache && _t !== null && _t.hash in snfCache) return snfCache[_t.hash]; let t = whnf(_t); if (t === null || t.type !== "abs") { error("not a screen/pixel"); return null; } t = abs(whnf(t.body)); if (t.body.type === "abs") return gnf(t); // not a screen, probably a pixel // yes `=== false` is relevant here while (t !== null && seemsScreeny(t) === false) { switch (t.type) { case "app": const _left = whnf(t.left); t = _left.type === "abs" ? subst(0, _left.body, t.right) : app(_left)(whnf(t.right)); break; case "abs": t = abs(whnf(t.body)); break; case "def": error("unexpected def"); return null; default: error("type"); return null; } } snfCache[_t.hash] = t; return t; }; const reduceLoop = (conf, _t) => { const { worker, root, logger, scheduler, caching } = conf; let cnt = 0; logger(`Term size: ${size(_t)} bit (BLC)
`); const stack = [{ ctx: root, t: _t }]; doCache = caching; for (cnt = 0; stack.length > 0 && !canceled; cnt++) { let { ctx, t } = scheduler(stack); if (toColor(t) !== UNKNOWN) continue; // could loop in gnf, therefore limit depth MAX = 10000000; depth = 0; canceled = false; try { t = snf(t); } catch (e) { if (e.message == "too much recursion") error( "your term most probably has some logical error (e.g. by not converging to a screen); if not, lmk", ); error(e); return null; } if (t === null) { error("in reduceLoop"); return null; } // smaller resolutions apparently crash the browser tab lol if (ctx.x[1] - ctx.x[0] < MAXRES) continue; let n; if ((n = seemsScreeny(t)) && n > 3 && Math.sqrt(n) % 1 === 0) { const subScreens = getSubScreens(t); console.assert(n == subScreens.length); const splitSize = Math.sqrt(n); const ctxWidth = (ctx.x[1] - ctx.x[0]) / splitSize; const ctxHeight = (ctx.y[1] - ctx.y[0]) / splitSize; const ctxs = []; const colors = []; let x0 = ctx.x[0]; let y0 = ctx.y[0]; for (let i = 0; i < n; i++) { const current = subScreens[i]; const subCtx = { x: [x0, x0 + ctxWidth], y: [y0, y0 + ctxHeight] }; ctxs.push(subCtx); stack.push({ ctx: subCtx, t: current.right }); colors.push(toColor(current.right)); if ((i + 1) % splitSize == 0) { x0 = ctx.x[0]; y0 += ctxHeight; } else x0 += ctxWidth; } drawScreen(worker, ctxs, colors); } else { // TODO: could we risk gnfing here? drawAt(worker, ctx.x, ctx.y, toColor(t)); } } return cnt; }; function helpSyntax() { alert( "The syntax uses standard notations for de Bruijn indexed lambda calculus. The de Bruijn indices start at 0. You can use `\\`, `λ`, or `[..]` for abstractions. Applications use parenthesis and assume left associativity by default. All terms can also be replaced by a string of binary lambda calculus (BLC) - useful if you're not comfortable with de Bruijn indices (e.g. by using John Tromp's `lam` compiler).\nYou can define substitutions (like in the presets) using `=`.\n\nHave fun!", ); }