-- MIT License, Copyright (c) 2024 Marvin Borner module Language.Mili.Reducer ( nf ) where import Data.Mili ( Nat(..) , Term(..) , shift ) data Singleton = TermTag Term | RecTag Term Term Term Term -- TODO: There will only ever be one substitution, so don't iterate the entire tree! -- WARNING: This function also shifts the substituted term and the levels of the parent! subst :: Int -> Int -> Term -> Term -> Term subst c l (Abs d m) s = Abs (d - 1) $ subst (c + 1) l m s subst c l (App a b) s = App (subst c l a s) (subst c l b s) subst c l (Lvl i) s | l == i = shift c s | otherwise = Lvl $ i - 1 subst _ _ (Num Z ) _ = Num Z subst c l (Num (S m) ) s = Num $ S $ subst c l m s subst c l (Rec (t1, t2) u v w) s = Rec (subst c l t1 s, subst c l t2 s) (subst c l u s) (subst c l v s) (subst c l w s) machine :: Term -> [Singleton] -> Term machine (App a b ) s = machine a (TermTag b : s) machine (Abs l u ) (TermTag t : s) = machine (subst 0 l u t) s machine (Rec (t1, t2) u v w) s = machine t1 (RecTag t2 u v w : s) machine (Num Z ) (RecTag _ u _ _ : s) = machine u s machine (Num (S t1)) ((RecTag t2 u v w) : s) = machine v (TermTag (Rec (App w t1, App w t2) u v w) : s) machine (Num (S t)) s = Num $ S $ machine t s -- TODO: ?? machine t _ = t -- | Reduce term to normal form nf :: Term -> Term nf t = machine t []