blob: c10b24f4e876e206fdcc7f71d5b8f9642dfef484 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
-- MIT License, Copyright (c) 2024 Marvin Borner
module Data.Mili
( Term(..)
, Nat(..)
, foldM
, fold
, shift
) where
import Data.Functor.Identity ( runIdentity )
import Prelude hiding ( abs
, min
)
data Nat = Z | S Term
data Term = Abs Int Term -- | Abstraction with level
| App Term Term -- | Application
| Lvl Int -- | de Bruijn level
| Num Nat -- | Peano numeral
| Rec Term Term Term Term Term -- | Unbounded iteration
instance Show Nat where
show Z = "Z"
show (S t) = "S(" <> show t <> ")"
instance Show Term where
showsPrec _ (Abs l m) =
showString "(\\" . shows l . showString "." . shows m . showString ")"
showsPrec _ (App m n) =
showString "(" . shows m . showString " " . shows n . showString ")"
showsPrec _ (Lvl i) = shows i
showsPrec _ (Num n) = shows n
showsPrec _ (Rec t1 t2 u v w) =
showString "REC ("
. shows t1
. showString ", "
. shows t2
. showString "), "
. shows u
. showString ", "
. shows v
. showString ", "
. shows w
foldM
:: Monad m
=> (Int -> Term -> m Term)
-> (Term -> Term -> m Term)
-> (Int -> m Term)
-> (Nat -> m Term)
-> (Term -> Term -> Term -> Term -> Term -> m Term)
-> Term
-> m Term
foldM abs app lvl num rec (Abs d m) = foldM abs app lvl num rec m >>= abs d
foldM abs app lvl num rec (App a b) = do
a' <- foldM abs app lvl num rec a
b' <- foldM abs app lvl num rec b
app a' b'
foldM _ _ lvl _ _ (Lvl i ) = pure i >>= lvl
foldM _ _ _ num _ (Num Z ) = pure Z >>= num
foldM abs app lvl num rec (Num (S m)) = foldM abs app lvl num rec m >>= num . S
foldM abs app lvl num rec (Rec t1 t2 u v w) = do
t1' <- foldM abs app lvl num rec t1
t2' <- foldM abs app lvl num rec t2
u' <- foldM abs app lvl num rec u
v' <- foldM abs app lvl num rec v
w' <- foldM abs app lvl num rec w
rec t1' t2' u' v' w'
fold
:: (Int -> Term -> Term)
-> (Term -> Term -> Term)
-> (Int -> Term)
-> (Nat -> Term)
-> (Term -> Term -> Term -> Term -> Term -> Term)
-> Term
-> Term
fold abs app lvl num rec term = runIdentity $ foldM
(\d m -> pure $ abs d m)
(\a b -> pure $ app a b)
(pure . lvl)
(pure . num)
(\t1 t2 u v w -> pure $ rec t1 t2 u v w)
term
shift :: Int -> Term -> Term
shift 0 = id
shift n = fold (\l m -> Abs (l + n) m) App (\l -> Lvl $ l + n) Num Rec
|