diff options
author | Pherkel | 2023-09-18 14:25:36 +0200 |
---|---|---|
committer | Pherkel | 2023-09-18 14:25:36 +0200 |
commit | d5e482b7dc3d8b6acc48a883ae9b53b354fa1715 (patch) | |
tree | 580f0ab45784664978d8f24c4831f3eec1bceb2e /swr2_asr/utils | |
parent | d5689047fa7062b284d13271bda39013dcf6150f (diff) |
decoder changes
Diffstat (limited to 'swr2_asr/utils')
-rw-r--r-- | swr2_asr/utils/decoder.py | 121 |
1 files changed, 87 insertions, 34 deletions
diff --git a/swr2_asr/utils/decoder.py b/swr2_asr/utils/decoder.py index 098f6a4..2b6d29b 100644 --- a/swr2_asr/utils/decoder.py +++ b/swr2_asr/utils/decoder.py @@ -1,4 +1,5 @@ """Decoder for CTC-based ASR.""" "" +from dataclasses import dataclass import os import torch @@ -9,37 +10,39 @@ from swr2_asr.utils.data import create_lexicon from swr2_asr.utils.tokenizer import CharTokenizer -# TODO: refactor to use torch CTC decoder class -def greedy_decoder( - output, labels, label_lengths, tokenizer: CharTokenizer, collapse_repeated=True -): # pylint: disable=redefined-outer-name - """Greedily decode a sequence.""" - blank_label = tokenizer.get_blank_token() - arg_maxes = torch.argmax(output, dim=2) # pylint: disable=no-member - decodes = [] - targets = [] - for i, args in enumerate(arg_maxes): - decode = [] - targets.append(tokenizer.decode(labels[i][: label_lengths[i]].tolist())) - for j, index in enumerate(args): - if index != blank_label: - if collapse_repeated and j != 0 and index == args[j - 1]: - continue - decode.append(index.item()) - decodes.append(tokenizer.decode(decode)) - return decodes, targets - - -def beam_search_decoder( +@dataclass +class DecoderOutput: + """Decoder output.""" + + words: list[str] + + +def decoder_factory(decoder_type: str = "greedy") -> callable: + """Decoder factory.""" + if decoder_type == "greedy": + return get_greedy_decoder + if decoder_type == "lm": + return get_beam_search_decoder + raise NotImplementedError + + +def get_greedy_decoder( + tokenizer: CharTokenizer, # pylint: disable=redefined-outer-name + *_, +): + """Greedy decoder.""" + return GreedyDecoder(tokenizer) + + +def get_beam_search_decoder( tokenizer: CharTokenizer, # pylint: disable=redefined-outer-name - tokens_path: str, - lang_model_path: str, - language: str, hparams: dict, # pylint: disable=redefined-outer-name ): """Beam search decoder.""" - - n_gram, beam_size, beam_threshold, n_best, lm_weight, word_score = ( + hparams = hparams.get("lm", {}) + language, lang_model_path, n_gram, beam_size, beam_threshold, n_best, lm_weight, word_score = ( + hparams["language"], + hparams["language_model_path"], hparams["n_gram"], hparams["beam_size"], hparams["beam_threshold"], @@ -53,6 +56,7 @@ def beam_search_decoder( torch.hub.download_url_to_file(url, f"data/mls_lm_{language}.tar.gz") _extract_tar("data/mls_lm_{language}.tar.gz", overwrite=True) + tokens_path = os.path.join(lang_model_path, f"mls_lm_{language}", "tokens.txt") if not os.path.isfile(tokens_path): tokenizer.create_tokens_txt(tokens_path) @@ -79,11 +83,66 @@ def beam_search_decoder( return decoder +class GreedyDecoder: + """Greedy decoder.""" + + def __init__(self, tokenizer: CharTokenizer): # pylint: disable=redefined-outer-name + self.tokenizer = tokenizer + + def __call__( + self, output, greedy_type: str = "inference", labels=None, label_lengths=None + ): # pylint: disable=redefined-outer-name + """Greedily decode a sequence.""" + if greedy_type == "train": + res = self.train(output, labels, label_lengths) + if greedy_type == "inference": + res = self.inference(output) + + res = [[DecoderOutput(words=res)]] + return res + + def train(self, output, labels, label_lengths): + """Greedily decode a sequence with known labels.""" + blank_label = tokenizer.get_blank_token() + arg_maxes = torch.argmax(output, dim=2) # pylint: disable=no-member + decodes = [] + targets = [] + for i, args in enumerate(arg_maxes): + decode = [] + targets.append(self.tokenizer.decode(labels[i][: label_lengths[i]].tolist())) + for j, index in enumerate(args): + if index != blank_label: + if j != 0 and index == args[j - 1]: + continue + decode.append(index.item()) + decodes.append(self.tokenizer.decode(decode)) + return decodes, targets + + def inference(self, output): + """Greedily decode a sequence.""" + collapse_repeated = True + arg_maxes = torch.argmax(output, dim=2) # pylint: disable=no-member + blank_label = self.tokenizer.get_blank_token() + decodes = [] + for args in arg_maxes: + decode = [] + for j, index in enumerate(args): + if index != blank_label: + if collapse_repeated and j != 0 and index == args[j - 1]: + continue + decode.append(index.item()) + decodes.append(self.tokenizer.decode(decode)) + + return decodes + + if __name__ == "__main__": tokenizer = CharTokenizer.from_file("data/tokenizers/char_tokenizer_german.json") tokenizer.create_tokens_txt("data/tokenizers/tokens_german.txt") hparams = { + "language": "german", + "lang_model_path": "data", "n_gram": 3, "beam_size": 100, "beam_threshold": 100, @@ -92,10 +151,4 @@ if __name__ == "__main__": "word_score": 1.0, } - beam_search_decoder( - tokenizer, - "data/tokenizers/tokens_german.txt", - "data", - "german", - hparams, - ) + get_beam_search_decoder(tokenizer, hparams) |