1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"lm_weights = [0, 1.0, 2.5,]\n",
"word_score = [-1.5, 0.0, 1.5]\n",
"beam_sizes = [50, 500]\n",
"beam_thresholds = [50]\n",
"beam_size_token = [10, 38]"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/lm/1zmdkgm91k912l2vgq978z800000gn/T/ipykernel_80481/3805229751.py:1: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n",
" from tqdm.autonotebook import tqdm\n",
"/Users/philippmerkel/DEV/SWR2-cool-projekt/.venv/lib/python3.10/site-packages/torchaudio/models/decoder/_ctc_decoder.py:62: UserWarning: The built-in flashlight integration is deprecated, and will be removed in future release. Please install flashlight-text. https://pypi.org/project/flashlight-text/ For the detail of CTC decoder migration, please see https://github.com/pytorch/audio/issues/3088.\n",
" warnings.warn(\n"
]
}
],
"source": [
"from tqdm.autonotebook import tqdm\n",
"\n",
"import torch\n",
"from torch.utils.data import DataLoader\n",
"import torch.nn.functional as F\n",
"\n",
"from swr2_asr.utils.decoder import decoder_factory\n",
"from swr2_asr.utils.tokenizer import CharTokenizer\n",
"from swr2_asr.model_deep_speech import SpeechRecognitionModel\n",
"from swr2_asr.utils.data import MLSDataset, Split, DataProcessing\n",
"from swr2_asr.utils.loss_scores import cer, wer"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "34aafd9aca2541748dc41d8550334536",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/144 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Download flag not set, skipping download\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/philippmerkel/DEV/SWR2-cool-projekt/.venv/lib/python3.10/site-packages/torchaudio/functional/functional.py:576: UserWarning: At least one mel filterbank has all zero values. The value for `n_mels` (128) may be set too high. Or, the value for `n_freqs` (201) may be set too low.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"New best WER: 0.8266228565397248 CER: 0.6048691547202959\n",
"Config: {'language': 'german', 'language_model_path': 'data', 'n_gram': 3, 'beam_size': 25, 'beam_threshold': 10, 'n_best': 1, 'lm_weight': 0, 'word_score': -1.5, 'beam_size_token': 10}\n",
"LM Weight: 0 Word Score: -1.5 Beam Size: 25 Beam Threshold: 10 Beam Size Token: 10\n",
"--------------------------------------------------------------\n",
"New best WER: 0.7900706123452581 CER: 0.49197597466135945\n",
"Config: {'language': 'german', 'language_model_path': 'data', 'n_gram': 3, 'beam_size': 25, 'beam_threshold': 50, 'n_best': 1, 'lm_weight': 0, 'word_score': -1.5, 'beam_size_token': 10}\n",
"LM Weight: 0 Word Score: -1.5 Beam Size: 25 Beam Threshold: 50 Beam Size Token: 10\n",
"--------------------------------------------------------------\n",
"New best WER: 0.7877685082828738 CER: 0.48660732878914315\n",
"Config: {'language': 'german', 'language_model_path': 'data', 'n_gram': 3, 'beam_size': 100, 'beam_threshold': 50, 'n_best': 1, 'lm_weight': 0, 'word_score': -1.5, 'beam_size_token': 10}\n",
"LM Weight: 0 Word Score: -1.5 Beam Size: 100 Beam Threshold: 50 Beam Size Token: 10\n",
"--------------------------------------------------------------\n"
]
}
],
"source": [
"\n",
"\n",
"tokenizer = CharTokenizer.from_file(\"data/tokenizers/char_tokenizer_german.json\")\n",
"\n",
"# manually increment tqdm progress bar\n",
"pbar = tqdm(total=len(lm_weights) * len(word_score) * len(beam_sizes) * len(beam_thresholds) * len(beam_size_token))\n",
"\n",
"base_config = {\n",
" \"language\": \"german\",\n",
" \"language_model_path\": \"data\", # path where model and supplementary files are stored\n",
" \"n_gram\": 3, # n-gram size of ,the language model, 3 or 5\n",
" \"beam_size\": 50 ,\n",
" \"beam_threshold\": 50,\n",
" \"n_best\": 1,\n",
" \"lm_weight\": 2,\n",
" \"word_score\": 0,\n",
" }\n",
"\n",
"dataset_params = {\n",
" \"dataset_path\": \"/Volumes/pherkel 2/SWR2-ASR\",\n",
" \"language\": \"mls_german_opus\",\n",
" \"split\": Split.DEV,\n",
" \"limited\": True,\n",
" \"download\": False,\n",
" \"size\": 0.01,\n",
"}\n",
" \n",
"\n",
"model_params = {\n",
" \"n_cnn_layers\": 3,\n",
" \"n_rnn_layers\": 5,\n",
" \"rnn_dim\": 512,\n",
" \"n_class\": tokenizer.get_vocab_size(),\n",
" \"n_feats\": 128,\n",
" \"stride\": 2,\n",
" \"dropout\": 0.1,\n",
"}\n",
"\n",
"model = SpeechRecognitionModel(**model_params)\n",
"\n",
"checkpoint = torch.load(\"data/epoch67\", map_location=torch.device(\"cpu\"))\n",
"\n",
"state_dict = {\n",
" k[len(\"module.\") :] if k.startswith(\"module.\") else k: v\n",
" for k, v in checkpoint[\"model_state_dict\"].items()\n",
"}\n",
"model.load_state_dict(state_dict, strict=True)\n",
"model.eval()\n",
"\n",
"\n",
"dataset = MLSDataset(**dataset_params,)\n",
"\n",
"data_processing = DataProcessing(\"valid\", tokenizer, {\"n_feats\": model_params[\"n_feats\"]})\n",
"\n",
"dataloader = DataLoader(\n",
" dataset=dataset,\n",
" batch_size=16,\n",
" shuffle = False,\n",
" collate_fn=data_processing,\n",
" num_workers=8,\n",
" pin_memory=True,\n",
")\n",
"\n",
"best_wer = 1.0\n",
"best_cer = 1.0\n",
"best_config = None\n",
"\n",
"for lm_weight in lm_weights:\n",
" for ws in word_score:\n",
" for beam_size in beam_sizes:\n",
" for beam_threshold in beam_thresholds:\n",
" for beam_size_t in beam_size_token:\n",
" config = base_config.copy()\n",
" config[\"lm_weight\"] = lm_weight\n",
" config[\"word_score\"] = ws\n",
" config[\"beam_size\"] = beam_size\n",
" config[\"beam_threshold\"] = beam_threshold\n",
" config[\"beam_size_token\"] = beam_size_t\n",
" \n",
" decoder = decoder_factory(\"lm\")(tokenizer, {\"lm\": config})\n",
" \n",
" test_cer, test_wer = [], []\n",
" with torch.no_grad():\n",
" model.eval()\n",
" for batch in dataloader:\n",
" # perform inference, decode, compute WER and CER\n",
" spectrograms, labels, input_lengths, label_lengths = batch\n",
" \n",
" output = model(spectrograms)\n",
" output = F.log_softmax(output, dim=2)\n",
" \n",
" decoded_preds = decoder(output)\n",
" decoded_targets = tokenizer.decode_batch(labels)\n",
" \n",
" for j, _ in enumerate(decoded_preds):\n",
" if j >= len(decoded_targets):\n",
" break\n",
" pred = \" \".join(decoded_preds[j][0].words).strip()\n",
" target = decoded_targets[j]\n",
" \n",
" test_cer.append(cer(pred, target))\n",
" test_wer.append(wer(pred, target))\n",
"\n",
" avg_cer = sum(test_cer) / len(test_cer)\n",
" avg_wer = sum(test_wer) / len(test_wer)\n",
" \n",
" if avg_wer < best_wer:\n",
" best_wer = avg_wer\n",
" best_cer = avg_cer\n",
" best_config = config\n",
" print(\"New best WER: \", best_wer, \" CER: \", best_cer)\n",
" print(\"Config: \", best_config)\n",
" print(\"LM Weight: \", lm_weight, \n",
" \" Word Score: \", ws, \n",
" \" Beam Size: \", beam_size, \n",
" \" Beam Threshold: \", beam_threshold, \n",
" \" Beam Size Token: \", beam_size_t)\n",
" print(\"--------------------------------------------------------------\")\n",
" \n",
" pbar.update(1)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|