1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
"""Main definition of the Deep speech 2 model by Baidu Research.
Following definition by Assembly AI
(https://www.assemblyai.com/blog/end-to-end-speech-recognition-pytorch/)
"""
import torch.nn.functional as F
from torch import nn
class CNNLayerNorm(nn.Module):
"""Layer normalization built for cnns input"""
def __init__(self, n_feats):
super(CNNLayerNorm, self).__init__()
self.layer_norm = nn.LayerNorm(n_feats)
def forward(self, data):
"""x (batch, channel, feature, time)"""
data = data.transpose(2, 3).contiguous() # (batch, channel, time, feature)
data = self.layer_norm(data)
return data.transpose(2, 3).contiguous() # (batch, channel, feature, time)
class ResidualCNN(nn.Module):
"""Residual CNN inspired by https://arxiv.org/pdf/1603.05027.pdf
except with layer norm instead of batch norm
"""
def __init__(self, in_channels, out_channels, kernel, stride, dropout, n_feats):
super(ResidualCNN, self).__init__()
self.cnn1 = nn.Conv2d(in_channels, out_channels, kernel, stride, padding=kernel // 2)
self.cnn2 = nn.Conv2d(out_channels, out_channels, kernel, stride, padding=kernel // 2)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.layer_norm1 = CNNLayerNorm(n_feats)
self.layer_norm2 = CNNLayerNorm(n_feats)
def forward(self, data):
"""data (batch, channel, feature, time)"""
residual = data # (batch, channel, feature, time)
data = self.layer_norm1(data)
data = F.gelu(data)
data = self.dropout1(data)
data = self.cnn1(data)
data = self.layer_norm2(data)
data = F.gelu(data)
data = self.dropout2(data)
data = self.cnn2(data)
data += residual
return data # (batch, channel, feature, time)
class BidirectionalGRU(nn.Module):
"""Bidirectional GRU layer"""
def __init__(self, rnn_dim, hidden_size, dropout, batch_first):
super(BidirectionalGRU, self).__init__()
self.BiGRU = nn.GRU( # pylint: disable=invalid-name
input_size=rnn_dim,
hidden_size=hidden_size,
num_layers=1,
batch_first=batch_first,
bidirectional=True,
)
self.layer_norm = nn.LayerNorm(rnn_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, data):
"""x (batch, time, feature)"""
data = self.layer_norm(data)
data = F.gelu(data)
data, _ = self.BiGRU(data)
data = self.dropout(data)
return data
class SpeechRecognitionModel(nn.Module):
"""Speech Recognition Model Inspired by DeepSpeech 2"""
def __init__(
self, n_cnn_layers, n_rnn_layers, rnn_dim, n_class, n_feats, stride=2, dropout=0.1
):
super(SpeechRecognitionModel, self).__init__()
n_feats = n_feats // 2
self.cnn = nn.Conv2d(
1, 32, 3, stride=stride, padding=3 // 2
) # cnn for extracting heirachal features
# n residual cnn layers with filter size of 32
self.rescnn_layers = nn.Sequential(
*[
ResidualCNN(32, 32, kernel=3, stride=1, dropout=dropout, n_feats=n_feats)
for _ in range(n_cnn_layers)
]
)
self.fully_connected = nn.Linear(n_feats * 32, rnn_dim)
self.birnn_layers = nn.Sequential(
*[
BidirectionalGRU(
rnn_dim=rnn_dim if i == 0 else rnn_dim * 2,
hidden_size=rnn_dim,
dropout=dropout,
batch_first=i == 0,
)
for i in range(n_rnn_layers)
]
)
self.classifier = nn.Sequential(
nn.Linear(rnn_dim * 2, rnn_dim), # birnn returns rnn_dim*2
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(rnn_dim, n_class),
)
def forward(self, data):
"""x (batch, channel, feature, time)"""
data = self.cnn(data)
data = self.rescnn_layers(data)
sizes = data.size()
data = data.view(sizes[0], sizes[1] * sizes[2], sizes[3]) # (batch, feature, time)
data = data.transpose(1, 2) # (batch, time, feature)
data = self.fully_connected(data)
data = self.birnn_layers(data)
data = self.classifier(data)
return data
|