aboutsummaryrefslogtreecommitdiff
path: root/swr2_asr/train.py
blob: 5277c16bd82f312270302f2d10dc710211382d66 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
"""Training script for the ASR model."""
import os
from typing import TypedDict

import click
import torch
import torch.nn.functional as F
import yaml
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm.autonotebook import tqdm

from swr2_asr.model_deep_speech import SpeechRecognitionModel
from swr2_asr.utils.data import DataProcessing, MLSDataset, Split
from swr2_asr.utils.decoder import decoder_factory
from swr2_asr.utils.loss_scores import cer, wer
from swr2_asr.utils.tokenizer import CharTokenizer


class IterMeter:
    """keeps track of total iterations"""

    def __init__(self):
        self.val = 0

    def step(self):
        """step"""
        self.val += 1

    def get(self):
        """get steps"""
        return self.val


class TrainArgs(TypedDict):
    """Type for the arguments of the training function."""

    model: SpeechRecognitionModel
    device: torch.device  # pylint: disable=no-member
    train_loader: DataLoader
    criterion: nn.CTCLoss
    optimizer: optim.AdamW
    scheduler: optim.lr_scheduler.OneCycleLR
    epoch: int
    iter_meter: IterMeter


def train(train_args) -> float:
    """Train
    Args:
        model: model
        device: device type
        train_loader: train dataloader
        criterion: loss function
        optimizer: optimizer
        scheduler: learning rate scheduler
        epoch: epoch number
        iter_meter: iteration meter

    Returns:
        avg_train_loss: avg_train_loss for the epoch

    Information:
        spectrograms: (batch, time, feature)
        labels: (batch, label_length)

        model output: (batch,time, n_class)

    """
    # get values from train_args:
    (
        model,
        device,
        train_loader,
        criterion,
        optimizer,
        scheduler,
        epoch,
        iter_meter,
    ) = train_args.values()

    model.train()
    print(f"training batch {epoch}")
    train_losses = []
    for _data in tqdm(train_loader, desc="Training batches"):
        spectrograms, labels, input_lengths, label_lengths = _data
        spectrograms, labels = spectrograms.to(device), labels.to(device)

        optimizer.zero_grad()

        output = model(spectrograms)  # (batch, time, n_class)
        output = F.log_softmax(output, dim=2)
        output = output.transpose(0, 1)  # (time, batch, n_class)

        loss = criterion(output, labels, input_lengths, label_lengths)
        train_losses.append(loss)
        loss.backward()

        optimizer.step()
        scheduler.step()
        iter_meter.step()
    avg_train_loss = sum(train_losses) / len(train_losses)
    print(f"Train set: Average loss: {avg_train_loss:.2f}")
    return avg_train_loss


class TestArgs(TypedDict):
    """Type for the arguments of the test function."""

    model: SpeechRecognitionModel
    device: torch.device  # pylint: disable=no-member
    test_loader: DataLoader
    criterion: nn.CTCLoss
    tokenizer: CharTokenizer
    decoder: str


def test(test_args: TestArgs) -> tuple[float, float, float]:
    """Test"""
    print("\nevaluating...")

    # get values from test_args:
    model, device, test_loader, criterion, tokenizer, decoder = test_args.values()

    model.eval()
    test_loss = 0
    test_cer, test_wer = [], []
    with torch.no_grad():
        for _data in tqdm(test_loader, desc="Validation Batches"):
            spectrograms, labels, input_lengths, label_lengths = _data
            spectrograms, labels = spectrograms.to(device), labels.to(device)

            output = model(spectrograms)  # (batch, time, n_class)
            output = F.log_softmax(output, dim=2)
            output = output.transpose(0, 1)  # (time, batch, n_class)

            loss = criterion(output, labels, input_lengths, label_lengths)
            test_loss += loss.item() / len(test_loader)

            decoded_targets = tokenizer.decode_batch(labels)
            decoded_preds = decoder(output.transpose(0, 1))
            for j, _ in enumerate(decoded_preds):
                if j >= len(decoded_targets):
                    break
                pred = " ".join(decoded_preds[j][0].words).strip()  # batch, top, words
                target = decoded_targets[j]
                test_cer.append(cer(target, pred))
                test_wer.append(wer(target, pred))

    avg_cer = sum(test_cer) / len(test_cer)
    avg_wer = sum(test_wer) / len(test_wer)

    print(
        f"Test set: \
            Average loss: {test_loss:.4f}, \
            Average CER: {avg_cer:4f} \
            Average WER: {avg_wer:.4f}\n"
    )

    return test_loss, avg_cer, avg_wer


@click.command()
@click.option(
    "--config_path",
    default="config.yaml",
    help="Path to yaml config file",
    type=click.Path(exists=True),
)
def main(config_path: str):
    """Main function for training the model.

    Gets all configuration arguments from yaml config file.
    """
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")  # pylint: disable=no-member

    torch.manual_seed(7)

    with open(config_path, "r", encoding="utf-8") as yaml_file:
        config_dict = yaml.safe_load(yaml_file)

    # Create separate dictionaries for each top-level key
    model_config = config_dict.get("model", {})
    training_config = config_dict.get("training", {})
    dataset_config = config_dict.get("dataset", {})
    tokenizer_config = config_dict.get("tokenizer", {})
    checkpoints_config = config_dict.get("checkpoints", {})
    decoder_config = config_dict.get("decoder", {})

    if not os.path.isdir(dataset_config["dataset_root_path"]):
        os.makedirs(dataset_config["dataset_root_path"])

    train_dataset = MLSDataset(
        dataset_config["dataset_root_path"],
        dataset_config["language_name"],
        Split.TRAIN,
        download=dataset_config["download"],
        limited=dataset_config["limited_supervision"],
        size=dataset_config["dataset_percentage"],
    )
    valid_dataset = MLSDataset(
        dataset_config["dataset_root_path"],
        dataset_config["language_name"],
        Split.TEST,
        download=dataset_config["download"],
        limited=dataset_config["limited_supervision"],
        size=dataset_config["dataset_percentage"],
    )

    kwargs = {"num_workers": training_config["num_workers"], "pin_memory": True} if use_cuda else {}

    if tokenizer_config["tokenizer_path"] is None:
        print("Tokenizer not found!")
        if click.confirm("Do you want to train a new tokenizer?", default=True):
            pass
        else:
            return
        tokenizer = CharTokenizer.train(
            dataset_config["dataset_root_path"], dataset_config["language_name"]
        )
    tokenizer = CharTokenizer.from_file(tokenizer_config["tokenizer_path"])

    train_data_processing = DataProcessing("train", tokenizer, {"n_feats": model_config["n_feats"]})
    valid_data_processing = DataProcessing("valid", tokenizer, {"n_feats": model_config["n_feats"]})

    train_loader = DataLoader(
        dataset=train_dataset,
        batch_size=training_config["batch_size"],
        shuffle=dataset_config["shuffle"],
        collate_fn=train_data_processing,
        **kwargs,
    )
    valid_loader = DataLoader(
        dataset=valid_dataset,
        batch_size=training_config["batch_size"],
        shuffle=dataset_config["shuffle"],
        collate_fn=valid_data_processing,
        **kwargs,
    )

    model = SpeechRecognitionModel(
        model_config["n_cnn_layers"],
        model_config["n_rnn_layers"],
        model_config["rnn_dim"],
        tokenizer.get_vocab_size(),
        model_config["n_feats"],
        model_config["stride"],
        model_config["dropout"],
    ).to(device)

    optimizer = optim.AdamW(model.parameters(), training_config["learning_rate"])
    criterion = nn.CTCLoss(tokenizer.get_blank_token()).to(device)
    scheduler = optim.lr_scheduler.OneCycleLR(
        optimizer,
        max_lr=training_config["learning_rate"],
        steps_per_epoch=int(len(train_loader)),
        epochs=training_config["epochs"],
        anneal_strategy="linear",
    )
    prev_epoch = 0

    if checkpoints_config["model_load_path"] is not None:
        checkpoint = torch.load(checkpoints_config["model_load_path"], map_location=device)
        state_dict = {
            k[len("module.") :] if k.startswith("module.") else k: v
            for k, v in checkpoint["model_state_dict"].items()
        }

        model.load_state_dict(state_dict)
        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
        prev_epoch = checkpoint["epoch"]

    iter_meter = IterMeter()

    decoder = decoder_factory(decoder_config.get("type", "greedy"))(tokenizer, decoder_config)

    for epoch in range(prev_epoch + 1, training_config["epochs"] + 1):
        train_args: TrainArgs = {
            "model": model,
            "device": device,
            "train_loader": train_loader,
            "criterion": criterion,
            "optimizer": optimizer,
            "scheduler": scheduler,
            "epoch": epoch,
            "iter_meter": iter_meter,
        }

        train_loss = train(train_args)

        test_loss, test_cer, test_wer = 0, 0, 0
        test_args: TestArgs = {
            "model": model,
            "device": device,
            "test_loader": valid_loader,
            "criterion": criterion,
            "tokenizer": tokenizer,
            "decoder": decoder,
        }

        if training_config["eval_every_n"] != 0 and epoch % training_config["eval_every_n"] == 0:
            test_loss, test_cer, test_wer = test(test_args)

        if checkpoints_config["model_save_path"] is None:
            continue

        if not os.path.isdir(os.path.dirname(checkpoints_config["model_save_path"])):
            os.makedirs(os.path.dirname(checkpoints_config["model_save_path"]))

        torch.save(
            {
                "epoch": epoch,
                "model_state_dict": model.state_dict(),
                "optimizer_state_dict": optimizer.state_dict(),
                "train_loss": train_loss,
                "test_loss": test_loss,
                "avg_cer": test_cer,
                "avg_wer": test_wer,
            },
            checkpoints_config["model_save_path"] + str(epoch),
        )


if __name__ == "__main__":
    main()  # pylint: disable=no-value-for-parameter