1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
|
"""Decoder for CTC-based ASR.""" ""
import os
import torch
from torchaudio.datasets.utils import _extract_tar
from torchaudio.models.decoder import ctc_decoder
from swr2_asr.utils.data import create_lexicon
from swr2_asr.utils.tokenizer import CharTokenizer
# TODO: refactor to use torch CTC decoder class
def greedy_decoder(
output, labels, label_lengths, tokenizer: CharTokenizer, collapse_repeated=True
): # pylint: disable=redefined-outer-name
"""Greedily decode a sequence."""
blank_label = tokenizer.get_blank_token()
arg_maxes = torch.argmax(output, dim=2) # pylint: disable=no-member
decodes = []
targets = []
for i, args in enumerate(arg_maxes):
decode = []
targets.append(tokenizer.decode(labels[i][: label_lengths[i]].tolist()))
for j, index in enumerate(args):
if index != blank_label:
if collapse_repeated and j != 0 and index == args[j - 1]:
continue
decode.append(index.item())
decodes.append(tokenizer.decode(decode))
return decodes, targets
def beam_search_decoder(
tokenizer: CharTokenizer, # pylint: disable=redefined-outer-name
tokens_path: str,
lang_model_path: str,
language: str,
hparams: dict, # pylint: disable=redefined-outer-name
):
"""Beam search decoder."""
n_gram, beam_size, beam_threshold, n_best, lm_weight, word_score = (
hparams["n_gram"],
hparams["beam_size"],
hparams["beam_threshold"],
hparams["n_best"],
hparams["lm_weight"],
hparams["word_score"],
)
if not os.path.isdir(os.path.join(lang_model_path, f"mls_lm_{language}")):
url = f"https://dl.fbaipublicfiles.com/mls/mls_lm_{language}.tar.gz"
torch.hub.download_url_to_file(url, f"data/mls_lm_{language}.tar.gz")
_extract_tar("data/mls_lm_{language}.tar.gz", overwrite=True)
if not os.path.isfile(tokens_path):
tokenizer.create_tokens_txt(tokens_path)
lexicon_path = os.path.join(lang_model_path, f"mls_lm_{language}", "lexicon.txt")
if not os.path.isfile(lexicon_path):
occurences_path = os.path.join(lang_model_path, f"mls_lm_{language}", "vocab_counts.txt")
create_lexicon(occurences_path, lexicon_path)
lm_path = os.path.join(lang_model_path, f"mls_lm_{language}", f"{n_gram}-gram_lm.arpa")
decoder = ctc_decoder(
lexicon=lexicon_path,
tokens=tokens_path,
lm=lm_path,
blank_token="_",
sil_token="<SPACE>",
unk_word="<UNK>",
nbest=n_best,
beam_size=beam_size,
beam_threshold=beam_threshold,
lm_weight=lm_weight,
word_score=word_score,
)
return decoder
if __name__ == "__main__":
tokenizer = CharTokenizer.from_file("data/tokenizers/char_tokenizer_german.json")
tokenizer.create_tokens_txt("data/tokenizers/tokens_german.txt")
hparams = {
"n_gram": 3,
"beam_size": 100,
"beam_threshold": 100,
"n_best": 1,
"lm_weight": 0.5,
"word_score": 1.0,
}
beam_search_decoder(
tokenizer,
"data/tokenizers/tokens_german.txt",
"data",
"german",
hparams,
)
|