1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
"""Decoder for CTC-based ASR.""" ""
import os
from dataclasses import dataclass
import torch
from torchaudio.datasets.utils import _extract_tar
from torchaudio.models.decoder import ctc_decoder
from swr2_asr.utils.data import create_lexicon
from swr2_asr.utils.tokenizer import CharTokenizer
@dataclass
class DecoderOutput:
"""Decoder output."""
words: list[str]
def decoder_factory(decoder_type: str = "greedy") -> callable:
"""Decoder factory."""
if decoder_type == "greedy":
return get_greedy_decoder
if decoder_type == "lm":
return get_beam_search_decoder
raise NotImplementedError
def get_greedy_decoder(
tokenizer: CharTokenizer, # pylint: disable=redefined-outer-name
*_,
):
"""Greedy decoder."""
return GreedyDecoder(tokenizer)
def get_beam_search_decoder(
tokenizer: CharTokenizer, # pylint: disable=redefined-outer-name
hparams: dict, # pylint: disable=redefined-outer-name
):
"""Beam search decoder."""
hparams = hparams.get("lm", {})
language, lang_model_path, n_gram, beam_size, beam_threshold, n_best, lm_weight, word_score = (
hparams["language"],
hparams["language_model_path"],
hparams["n_gram"],
hparams["beam_size"],
hparams["beam_threshold"],
hparams["n_best"],
hparams["lm_weight"],
hparams["word_score"],
)
if not os.path.isdir(os.path.join(lang_model_path, f"mls_lm_{language}")):
url = f"https://dl.fbaipublicfiles.com/mls/mls_lm_{language}.tar.gz"
torch.hub.download_url_to_file(url, f"data/mls_lm_{language}.tar.gz")
_extract_tar("data/mls_lm_{language}.tar.gz", overwrite=True)
tokens_path = os.path.join(lang_model_path, f"mls_lm_{language}", "tokens.txt")
if not os.path.isfile(tokens_path):
tokenizer.create_tokens_txt(tokens_path)
lexicon_path = os.path.join(lang_model_path, f"mls_lm_{language}", "lexicon.txt")
if not os.path.isfile(lexicon_path):
occurences_path = os.path.join(lang_model_path, f"mls_lm_{language}", "vocab_counts.txt")
create_lexicon(occurences_path, lexicon_path)
lm_path = os.path.join(lang_model_path, f"mls_lm_{language}", f"{n_gram}-gram_lm.arpa")
decoder = ctc_decoder(
lexicon=lexicon_path,
tokens=tokens_path,
lm=lm_path,
blank_token="_",
sil_token="<SPACE>",
unk_word="<UNK>",
nbest=n_best,
beam_size=beam_size,
beam_threshold=beam_threshold,
lm_weight=lm_weight,
word_score=word_score,
)
return decoder
class GreedyDecoder:
"""Greedy decoder."""
def __init__(self, tokenizer: CharTokenizer): # pylint: disable=redefined-outer-name
self.tokenizer = tokenizer
def __call__(
self, output, greedy_type: str = "inference", labels=None, label_lengths=None
): # pylint: disable=redefined-outer-name
"""Greedily decode a sequence."""
if greedy_type == "train":
res = self.train(output, labels, label_lengths)
if greedy_type == "inference":
res = self.inference(output)
res = [x.split(" ") for x in res]
res = [[DecoderOutput(x)] for x in res]
return res
def train(self, output, labels, label_lengths):
"""Greedily decode a sequence with known labels."""
blank_label = tokenizer.get_blank_token()
arg_maxes = torch.argmax(output, dim=2) # pylint: disable=no-member
decodes = []
targets = []
for i, args in enumerate(arg_maxes):
decode = []
targets.append(self.tokenizer.decode(labels[i][: label_lengths[i]].tolist()))
for j, index in enumerate(args):
if index != blank_label:
if j != 0 and index == args[j - 1]:
continue
decode.append(index.item())
decodes.append(self.tokenizer.decode(decode))
return decodes, targets
def inference(self, output):
"""Greedily decode a sequence."""
collapse_repeated = True
arg_maxes = torch.argmax(output, dim=2) # pylint: disable=no-member
blank_label = self.tokenizer.get_blank_token()
decodes = []
for args in arg_maxes:
decode = []
for j, index in enumerate(args):
if index != blank_label:
if collapse_repeated and j != 0 and index == args[j - 1]:
continue
decode.append(index.item())
decodes.append(self.tokenizer.decode(decode))
return decodes
if __name__ == "__main__":
tokenizer = CharTokenizer.from_file("data/tokenizers/char_tokenizer_german.json")
tokenizer.create_tokens_txt("data/tokenizers/tokens_german.txt")
hparams = {
"language": "german",
"lang_model_path": "data",
"n_gram": 3,
"beam_size": 100,
"beam_threshold": 100,
"n_best": 1,
"lm_weight": 0.5,
"word_score": 1.0,
}
get_beam_search_decoder(tokenizer, hparams)
|