1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
// Copyright (c) 2023, Marvin Borner <dev@marvinborner.de>
// SPDX-License-Identifier: MIT
// We need to find the longest repeating subexpressions.
// We do this by creating a kind-of merkle tree out of the expressions
// and finding the largest repeating subtrees.
#include <stdio.h>
#include <search.h>
#include <string.h>
#include <stdlib.h>
#include <tree.h>
static inline uint32_t murmur_32_scramble(uint32_t k)
{
k *= 0xcc9e2d51;
k = (k << 15) | (k >> 17);
k *= 0x1b873593;
return k;
}
// TODO: I'm really unsure whether murmur3 is appropriate for this.
static uint32_t murmur3_32(const uint8_t *key, size_t len, uint32_t seed)
{
uint32_t h = seed;
uint32_t k;
for (size_t i = len >> 2; i; i--) {
memcpy(&k, key, sizeof(uint32_t));
key += sizeof(uint32_t);
h ^= murmur_32_scramble(k);
h = (h << 13) | (h >> 19);
h = h * 5 + 0xe6546b64;
}
k = 0;
for (size_t i = len & 3; i; i--) {
k <<= 8;
k |= key[i - 1];
}
h ^= murmur_32_scramble(k);
h ^= len;
h ^= h >> 16;
h *= 0x85ebca6b;
h ^= h >> 13;
h *= 0xc2b2ae35;
h ^= h >> 16;
return h;
}
static struct list *list_end = 0;
static struct list *list_add(struct list *list, void *data)
{
struct list *new = malloc(sizeof(*new));
new->next = list;
new->data = data;
new->val = list ? list->val + 1 : 1; // amount of trees in list
return new;
}
static struct list *list_add_prioritized(struct list *list, struct list *sub)
{
struct list *new = malloc(sizeof(*new));
/* new->val = ((struct tree *)sub->data)->size * sub->val; */
new->val = ((struct tree *)sub->data)->size;
new->data = sub;
if (!list) {
new->next = list;
return new;
}
if (new->val >= list->val) { // insert at head
new->next = list;
return new;
}
struct list *iterator = list;
while (iterator->next && new->val < iterator->next->val) {
iterator = iterator->next;
}
new->next = iterator->next;
iterator->next = new;
return list;
}
// element of the tsearch tree
struct set_element {
uint32_t hash;
struct list *list;
};
// comparison_fn_t for tsearch
static int hash_compare(const void *_a, const void *_b)
{
const struct set_element *a = _a;
const struct set_element *b = _b;
if (a->hash < b->hash)
return -1;
if (a->hash > b->hash)
return 1;
return 0;
}
// applies the hash function to the tree's elements (similar to merkle trees)
// TODO: as above: rethink hash choice
static struct tree *build_tree(struct term *term, void **set)
{
struct tree *tree = malloc(sizeof(*tree));
tree->type = term->type;
tree->state = VALIDATED_TREE;
switch (term->type) {
case ABS:
tree->u.abs.term = build_tree(term->u.abs.term, set);
tree->hash =
murmur3_32((const uint8_t *)&tree->type,
sizeof(tree->type), tree->u.abs.term->hash);
tree->size = tree->u.abs.term->size + 2;
break;
case APP:
tree->u.app.lhs = build_tree(term->u.app.lhs, set);
tree->u.app.rhs = build_tree(term->u.app.rhs, set);
tree->hash =
murmur3_32((const uint8_t *)&tree->type,
sizeof(tree->type), tree->u.app.lhs->hash);
tree->hash =
murmur3_32((const uint8_t *)&tree->hash,
sizeof(tree->hash), tree->u.app.rhs->hash);
tree->size = tree->u.app.lhs->size + tree->u.app.rhs->size + 3;
break;
case VAR:
tree->u.var.index = term->u.var.index;
tree->hash = murmur3_32((const uint8_t *)&tree->type,
sizeof(tree->type), tree->u.var.index);
tree->size = term->u.var.index;
break;
default:
fprintf(stderr, "invalid type %d\n", term->type);
return 0;
}
if (tree->size < 10) // not suitable for deduplication
return tree;
struct set_element *element = malloc(sizeof(*element));
element->hash = tree->hash;
struct set_element **handle = tsearch(element, set, hash_compare);
if (*handle == element) { // first of its kind
element->list = list_add(list_end, tree);
return tree;
}
free(element); // already exists, not needed
(*handle)->list = list_add((*handle)->list, tree);
fprintf(stderr, "found suitable duplicate! %x %d\n", tree->hash,
tree->size);
return tree;
}
static struct term *tree_to_term(struct tree *tree)
{
struct term *term = new_term(tree->type);
switch (tree->type) {
case ABS:
term->u.abs.term = tree_to_term(tree->u.abs.term);
break;
case APP:
term->u.app.lhs = tree_to_term(tree->u.app.lhs);
term->u.app.rhs = tree_to_term(tree->u.app.rhs);
break;
case VAR:
term->u.var.index = tree->u.var.index;
break;
case REF:
term->u.ref.index = tree->u.ref.index;
break;
default:
fprintf(stderr, "invalid type %d\n", term->type);
}
return term;
}
static struct tree *clone_tree_root(struct tree *tree)
{
struct tree *new = malloc(sizeof(*new));
new->type = tree->type;
new->hash = tree->hash;
switch (tree->type) {
case ABS:
new->u.abs.term = tree->u.abs.term;
break;
case APP:
new->u.app.lhs = tree->u.app.lhs;
new->u.app.rhs = tree->u.app.rhs;
break;
case VAR:
new->u.var.index = tree->u.var.index;
break;
default:
fprintf(stderr, "invalid type %d\n", tree->type);
free(new);
return 0;
}
return new;
}
static void invalidate_tree(struct tree *tree)
{
tree->state = INVALIDATED_TREE;
switch (tree->type) {
case ABS:
invalidate_tree(tree->u.abs.term);
break;
case APP:
invalidate_tree(tree->u.app.lhs);
invalidate_tree(tree->u.app.rhs);
break;
case VAR:
break;
default:
fprintf(stderr, "invalid type %d\n", tree->type);
}
}
static void free_tree(struct tree *tree)
{
switch (tree->type) {
case ABS:
free_tree(tree->u.abs.term);
break;
case APP:
free_tree(tree->u.app.lhs);
free_tree(tree->u.app.rhs);
break;
case VAR:
break;
case REF:
break;
default:
fprintf(stderr, "invalid type %d\n", tree->type);
return;
}
if (FREEABLE_TREE(tree))
free(tree);
}
static void ref_invalidated_tree(struct tree *tree)
{
switch (tree->type) {
case ABS:
free_tree(tree->u.abs.term);
break;
case APP:
free_tree(tree->u.app.lhs);
free_tree(tree->u.app.rhs);
break;
case VAR:
break;
default:
fprintf(stderr, "invalid type %d\n", tree->type);
}
if (tree->state != INVALIDATED_TREE &&
tree->state != VALIDATED_TREE) { // is reffed
tree->type = REF;
tree->u.ref.index = tree->state - 1;
tree->state = VALIDATED_TREE;
}
}
struct list *tree_merge_duplicates(struct term *term)
{
void *set = 0;
build_tree(term, &set);
if (!set)
return 0;
// construct priority list while deleting set
struct list *prioritized = list_end;
while (set) {
struct set_element *element = *(struct set_element **)set;
prioritized = list_add_prioritized(prioritized, element->list);
tdelete(element, &set, hash_compare);
free(element);
}
struct list *final = list_end;
struct list *invalidated = list_end;
struct list *iterator = prioritized;
// add longest (=> blueprint/structure of expression)
final = list_add(final, ((struct list *)iterator->data)->data);
iterator = iterator->next;
while (iterator) {
struct list *list = iterator->data;
struct tree *head = list->data;
print_bruijn(tree_to_term(head));
printf("\n%x: %d\n\n", head->hash, list->val);
if (head->state != VALIDATED_TREE) {
printf("skipping invalidated: %x\n", head->hash);
iterator = iterator->next;
continue;
}
if (list->val > 1) { // needs merging
// clone root so it doesn't get replaced by a ref to itself
struct tree *cloned_head = clone_tree_root(head);
cloned_head->state = INVALIDATED_TREE;
final = list_add(final, cloned_head);
// invalidate all subtrees
while (list) {
invalidate_tree(list->data);
((struct tree *)list->data)->state =
final->val - 1;
invalidated = list_add(invalidated, list->data);
list = list->next;
}
}
iterator = iterator->next;
}
printf("\n---\n");
iterator = invalidated;
while (iterator) {
struct tree *huh = iterator->data;
printf("%x %d\n", huh->hash, huh->state);
print_bruijn(tree_to_term(huh));
printf("\n");
ref_invalidated_tree(iterator->data);
struct list *temp = iterator->next;
free(iterator);
iterator = temp;
}
printf("\n---\n");
iterator = final;
while (iterator) {
struct tree *huh = iterator->data;
struct term *foo = tree_to_term(huh);
print_bruijn(foo);
printf("\n%x\n\n", huh->hash);
iterator = iterator->next;
}
return final;
}
|