diff options
Diffstat (limited to 'process.html')
-rw-r--r-- | process.html | 271 |
1 files changed, 271 insertions, 0 deletions
diff --git a/process.html b/process.html new file mode 100644 index 0000000..7b0135b --- /dev/null +++ b/process.html @@ -0,0 +1,271 @@ +<!doctype html> +<html lang="de"> +<head> + <meta charset="UTF-8"> + <meta content="width=device-width, user-scalable=no, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0" + name="viewport"> + <meta content="ie=edge" http-equiv="X-UA-Compatible"> + <link href="assets/css/main.css" rel="stylesheet"> + <title>KV-Diagramme</title> +</head> +<body> +<nav class="navbar" id="navbar"> + <a href="#">KV-Diagramme</a> + <a href="overview.html">Allgemeines</a> + <a data-current href="process.html">Ablauf</a> + <a href="rules.html">Regeln</a> + <a href="usecase.html">Verwendungshinweise</a> + <a href="generator.html">Generator</a> +</nav> + +<div class="content"> + <p class="heading">Ablauf</p> + <p> + Das Minimieren eines booleschen Ausdrucks beginnt mit einer ausgefüllten Wahrheitstabelle, + mit deren Ausgangswerten daraufhin eine KV-Tafel erstellt wird und wie im folgenden + Beispiel erklärt, die disjunktive Normalform ausgelesen wird. + </p> + + <p><u>Beispielsablauf</u>:</p> + <ol> + <li> + <p>Wahrheitstabelle:</p> + <table> + <thead> + <tr> + <th>E<sub>4</sub></th> + <th>E<sub>3</sub></th> + <th>E<sub>2</sub></th> + <th>E<sub>1</sub></th> + <th>Z</th> + <th>DNF</th> + </tr> + </thead> + <tbody> + <tr> + <td class="false">0</td> + <td class="false">0</td> + <td class="false">0</td> + <td class="false">0</td> + <td class="output false">0</td> + </tr> + <tr> + <td class="false">0</td> + <td class="false">0</td> + <td class="false">0</td> + <td class="true">1</td> + <td class="output false">0</td> + </tr> + <tr> + <td class="false">0</td> + <td class="false">0</td> + <td class="true">1</td> + <td class="false">0</td> + <td class="output true">1</td> + <td>(<span class="not">E<sub>1</sub></span>∧E<sub>2</sub>∧<span + class="not">E<sub>3</sub></span>∧<span + class="not">E<sub>4</sub></span>) + </td> + </tr> + <tr> + <td class="false">0</td> + <td class="false">0</td> + <td class="true">1</td> + <td class="true">1</td> + <td class="output true">1</td> + <td>(E<sub>1</sub>∧E<sub>2</sub>∧<span class="not">E<sub>3</sub></span>∧<span + class="not">E<sub>4</sub></span>) + </td> + </tr> + <tr> + <td class="false">0</td> + <td class="true">1</td> + <td class="false">0</td> + <td class="false">0</td> + <td class="output false">0</td> + </tr> + <tr> + <td class="false">0</td> + <td class="true">1</td> + <td class="false">0</td> + <td class="true">1</td> + <td class="output true">1</td> + <td>(E<sub>1</sub>∧<span class="not">E<sub>2</sub></span>∧E<sub>3</sub>∧<span + class="not">E<sub>4</sub></span>) + </td> + </tr> + <tr> + <td class="false">0</td> + <td class="true">1</td> + <td class="true">1</td> + <td class="false">0</td> + <td class="output false">0</td> + </tr> + <tr> + <td class="false">0</td> + <td class="true">1</td> + <td class="true">1</td> + <td class="true">1</td> + <td class="output false">0</td> + </tr> + <tr> + <td class="true">1</td> + <td class="false">0</td> + <td class="false">0</td> + <td class="false">0</td> + <td class="output false">0</td> + </tr> + <tr> + <td class="true">1</td> + <td class="false">0</td> + <td class="false">0</td> + <td class="true">1</td> + <td class="output false">0</td> + </tr> + <tr> + <td class="true">1</td> + <td class="false">0</td> + <td class="true">1</td> + <td class="false">0</td> + <td class="output true">1</td> + <td>(<span class="not">E<sub>1</sub></span>∧E<sub>2</sub>∧<span + class="not">E<sub>3</sub></span>∧E<sub>4</sub>) + </td> + </tr> + <tr> + <td class="true">1</td> + <td class="false">0</td> + <td class="true">1</td> + <td class="true">1</td> + <td class="output true">1</td> + <td>(E<sub>1</sub>∧E<sub>2</sub>∧<span class="not">E<sub>3</sub></span>∧E<sub>4</sub>) + </td> + </tr> + <tr> + <td class="true">1</td> + <td class="true">1</td> + <td class="false">0</td> + <td class="false">0</td> + <td class="output false">0</td> + </tr> + <tr> + <td class="true">1</td> + <td class="true">1</td> + <td class="false">0</td> + <td class="true">1</td> + <td class="output false">0</td> + </tr> + <tr> + <td class="true">1</td> + <td class="true">1</td> + <td class="true">1</td> + <td class="false">0</td> + <td class="output true">1</td> + <td>(<span class="not">E<sub>1</sub></span>∧E<sub>2</sub>∧E<sub>3</sub>∧E<sub>4</sub>) + </td> + </tr> + <tr> + <td class="true">1</td> + <td class="true">1</td> + <td class="true">1</td> + <td class="true">1</td> + <td class="output false">0</td> + </tr> + </tbody> + </table> + </li> + + <li> + <p>Disjunktive Normalform ablesen (zum vergleichen):</p> + <p> + Z = + (<span class="not">E<sub>1</sub></span>∧E<sub>2</sub>∧<span + class="not">E<sub>3</sub></span>∧<span class="not">E<sub>4</sub></span>)∨ + (E<sub>1</sub>∧E<sub>2</sub>∧<span + class="not">E<sub>3</sub></span>∧<span class="not">E<sub>4</sub></span>)∨ + (E<sub>1</sub>∧<span + class="not">E<sub>2</sub></span>∧E<sub>3</sub>∧<span + class="not">E<sub>4</sub></span>)∨ + (<span class="not">E<sub>1</sub></span>∧E<sub>2</sub>∧<span + class="not">E<sub>3</sub></span>∧E<sub>4</sub>)∨ + (E<sub>1</sub>∧E<sub>2</sub>∧<span + class="not">E<sub>3</sub></span>∧E<sub>4</sub>)∨ + (<span + class="not">E<sub>1</sub></span>∧E<sub>2</sub>∧E<sub>3</sub>∧E<sub>4</sub>) + </p> + </li> + + <li> + <p>KV-Diagramm zeichnen und mit den <i>Z Werten</i> aus der Wahrheitstabelle + füllen:</p> + <button id="fill">Ausfüllen</button> + <div class="kv-grid"> + <div class="grid-child"></div> + <div class="grid-child">E<sub>1</sub></div> + <div class="grid-child">E<sub>1</sub></div> + <div class="grid-child">!E<sub>1</sub></div> + <div class="grid-child">!E<sub>1</sub></div> + <div class="grid-child"></div> + <div class="grid-child">E<sub>2</sub></div> + <div class="grid-child" id="4"></div> + <div class="grid-child" id="8"></div> + <div class="grid-child" id="7"></div> + <div class="grid-child" id="3"></div> + <div class="grid-child">!E<sub>4</sub></div> + <div class="grid-child">E<sub>2</sub></div> + <div class="grid-child" id="12"></div> + <div class="grid-child" id="16"></div> + <div class="grid-child" id="15"></div> + <div class="grid-child" id="11"></div> + <div class="grid-child">E<sub>4</sub></div> + <div class="grid-child">!E<sub>2</sub></div> + <div class="grid-child" id="10"></div> + <div class="grid-child" id="14"></div> + <div class="grid-child" id="13"></div> + <div class="grid-child" id="9"></div> + <div class="grid-child">E<sub>4</sub></div> + <div class="grid-child">!E<sub>2</sub></div> + <div class="grid-child" id="2"></div> + <div class="grid-child" id="6"></div> + <div class="grid-child" id="5"></div> + <div class="grid-child" id="1"></div> + <div class="grid-child">!E<sub>4</sub></div> + <div class="grid-child"></div> + <div class="grid-child">!E<sub>3</sub></div> + <div class="grid-child">E<sub>3</sub></div> + <div class="grid-child">E<sub>3</sub></div> + <div class="grid-child">!E<sub>3</sub></div> + <div class="grid-child"></div> + </div> + </li> + + <li> + <p>Felder mit Beachtung der <a href="rules.html">Regeln</a> zusammenfassen:</p> + <ol id="steps"></ol> + <button id="combine" style="display: none;">Starten</button> + </li> + + <li> + <p>Disjunktive Normalform erstellen:</p> + <p> + Z = (E<sub>2</sub>∧<span class="not">E<sub>3</sub></span>)∨ + (<span class="not">E<sub>1</sub></span>∧E<sub>2</sub>∧E<sub>4</sub>)∨ + (E<sub>1</sub>∧<span class="not">E<sub>2</sub></span>∧E<sub>3</sub> + <span class="not">E<sub>4</sub></span>) + </p> + </li> + </ol> + + <button id="up">Nach oben</button> + <a href="usecase.html">> Hinweise</a> +</div> + +<footer> + <hr> + Erstellt von <a href="https://marvinborner.de" target="_blank">Marvin Borner</a> TGI 11.1 RBS + Ulm +</footer> + +<script src="assets/js/process.js"></script> +</body> +</html> |