aboutsummaryrefslogtreecommitdiff
path: root/main.py
blob: f8e54da69d64ae4f9e547ec95884773d1a050640 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/bin/env python3

import sys

import torchaudio
import torchaudio.transforms as T
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torch.nn.functional as F

CHARS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ' "
EPOCHS = 25
FEATURES = 15  # idk


def usage():
    print(f"usage: {sys.argv[0]} <train|test|infer> [file]")
    sys.exit(1)


if __name__ != "__main__":
    sys.exit(1)  # this isn't a library bro

if len(sys.argv) < 2 or sys.argv[1] not in ["train", "test", "infer"]:
    usage()

MODE = sys.argv[1]

print("getting datasets...")

# download the datasets
if MODE == "train":
    train_dataset = torchaudio.datasets.LIBRISPEECH(
        "./data", url="train-clean-100", download=True
    )
if MODE == "test":
    test_dataset = torchaudio.datasets.LIBRISPEECH(
        "./data", url="test-clean", download=True
    )

print("got datasets!")


def preprocess(data):
    transform = T.MFCC(sample_rate=16000, n_mfcc=FEATURES)

    inputs = []
    targets = []
    input_lengths = []
    target_lengths = []

    for wav, sr, label, _, _, _ in data:
        if sr != 16000:
            resample = T.Resample(orig_freq=sr, new_freq=16000)
            wav = resample(wav)
        input = transform(wav).squeeze(0).transpose(0, 1)
        inputs.append(input)
        target = torch.Tensor([CHARS.index(c) for c in label])
        targets.append(target)
        input_lengths.append(input.shape[0])
        target_lengths.append(len(target))

    inputs = nn.utils.rnn.pad_sequence(inputs, batch_first=True)
    targets = nn.utils.rnn.pad_sequence(targets, batch_first=True)
    return (inputs, targets, input_lengths, target_lengths)


print("preprocessing datasets...")

# load the datasets into batches
if MODE == "train":
    train_loader = data.DataLoader(
        train_dataset, batch_size=10, shuffle=True, collate_fn=preprocess
    )
if MODE == "test":
    test_loader = data.DataLoader(
        test_dataset, batch_size=10, shuffle=True, collate_fn=preprocess
    )

print("datasets ready!")


class Model(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, num_layers=1):
        super().__init__()
        self.lstm = nn.LSTM(
            input_size, hidden_size, num_layers, batch_first=True
        )
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        x, _ = self.lstm(x)
        x = self.fc(x)
        return x


model = Model(input_size=FEATURES, hidden_size=128, output_size=len(CHARS) + 1)


def train():
    print("training model...")

    criterion = nn.CTCLoss(blank=len(CHARS))
    optimizer = optim.Adam(model.parameters())

    for epoch in range(EPOCHS):
        for i, (inputs, targets, input_lengths, target_lengths) in enumerate(
            train_loader
        ):
            print(f"epoch {epoch}/{EPOCHS}, iteration {i}/{len(train_loader)}")
            optimizer.zero_grad()

            outputs = model(inputs)
            outputs = F.log_softmax(outputs, dim=2)
            outputs = outputs.transpose(0, 1)

            loss = criterion(outputs, targets, input_lengths, target_lengths)
            loss.backward()
            optimizer.step()
        torch.save(model.state_dict(), f"target/model-{epoch}.ckpt")

    torch.save(model.state_dict(), "target/model-final.ckpt")
    print("model trained!")


def ctc_decode(outputs):
    arg_maxes = torch.argmax(outputs, dim=2)
    inferred = ""
    for i, args in enumerate(arg_maxes):
        decode = []
        for j, ind in enumerate(args):
            if ind != len(CHARS):
                if j != 0 and ind == args[j - 1]:
                    continue
                decode.append(ind.item())
        inferred += "".join([CHARS[c] for c in decode])
    return inferred


def ctc_decode_target(labels, label_lengths):
    target = ""
    for i, args in enumerate(labels):
        target += "".join(
            [CHARS[int(c)] for c in labels[i][: label_lengths[i]].tolist()]
        )
    return target


def test():
    model.load_state_dict(torch.load("target/model-final.ckpt"))

    # TODO: Calculate accuracy using string difference functions
    with torch.no_grad():
        for i, (inputs, targets, input_lengths, target_lengths) in enumerate(
            test_loader
        ):
            outputs = model(inputs)
            inferred = ctc_decode(outputs)
            target = ctc_decode_target(targets, target_lengths)
            print("\n=========================================\n")
            print("inferred: ", inferred)
            print("")
            print("target: ", target)


# TODO: Might be buggy?
def infer(file_):
    model.load_state_dict(torch.load("target/model-final.ckpt"))
    wav, sr = torchaudio.load(file_)
    inputs = preprocess([(wav, sr, "", None, None, None)])[0]
    with torch.no_grad():
        outputs = model(inputs)
        inferred = ctc_decode(outputs)
        print("inferred: ", inferred)


if MODE == "train":
    train()
elif MODE == "test":
    test()
elif MODE == "infer" and len(sys.argv) == 3:
    infer(sys.argv[2])
else:
    usage()