1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
|
'use strict';
module.exports = function _bc() {
// eslint-disable-line camelcase
// discuss at: http://locutus.io/php/_helpers/_bc
// original by: lmeyrick (https://sourceforge.net/projects/bcmath-js/)
// improved by: Brett Zamir (http://brett-zamir.me)
// example 1: var $bc = _bc()
// example 1: var $result = $bc.PLUS
// returns 1: '+'
/**
* BC Math Library for Javascript
* Ported from the PHP5 bcmath extension source code,
* which uses the Libbcmath package...
* Copyright (C) 1991, 1992, 1993, 1994, 1997 Free Software Foundation, Inc.
* Copyright (C) 2000 Philip A. Nelson
* The Free Software Foundation, Inc.
* 59 Temple Place, Suite 330
* Boston, MA 02111-1307 USA.
* e-mail: philnelson@acm.org
* us-mail: Philip A. Nelson
* Computer Science Department, 9062
* Western Washington University
* Bellingham, WA 98226-9062
*
* bcmath-js homepage:
*
* This code is covered under the LGPL licence, and can be used however you want :)
* Be kind and share any decent code changes.
*/
/**
* Binary Calculator (BC) Arbitrary Precision Mathematics Lib v0.10 (LGPL)
* Copy of Libbcmath included in PHP5 src
*
* Note: this is just the shared library file and does not include the php-style functions.
* use bcmath{-min}.js for functions like bcadd, bcsub etc.
*
* Feel free to use how-ever you want, just email any bug-fixes/improvements
* to the sourceforge project:
*
*
* Ported from the PHP5 bcmath extension source code,
* which uses the Libbcmath package...
* Copyright (C) 1991, 1992, 1993, 1994, 1997 Free Software Foundation, Inc.
* Copyright (C) 2000 Philip A. Nelson
* The Free Software Foundation, Inc.
* 59 Temple Place, Suite 330
* Boston, MA 02111-1307 USA.
* e-mail: philnelson@acm.org
* us-mail: Philip A. Nelson
* Computer Science Department, 9062
* Western Washington University
* Bellingham, WA 98226-9062
*/
var Libbcmath = {
PLUS: '+',
MINUS: '-',
BASE: 10,
// must be 10 (for now)
scale: 0,
// default scale
/**
* Basic number structure
*/
bc_num: function bc_num() {
this.n_sign = null; // sign
this.n_len = null; // (int) The number of digits before the decimal point.
this.n_scale = null; // (int) The number of digits after the decimal point.
// this.n_refs = null; // (int) The number of pointers to this number.
// this.n_text = null; // ?? Linked list for available list.
this.n_value = null; // array as value, where 1.23 = [1,2,3]
this.toString = function () {
var r, tmp;
tmp = this.n_value.join('');
// add minus sign (if applicable) then add the integer part
r = (this.n_sign === Libbcmath.PLUS ? '' : this.n_sign) + tmp.substr(0, this.n_len);
// if decimal places, add a . and the decimal part
if (this.n_scale > 0) {
r += '.' + tmp.substr(this.n_len, this.n_scale);
}
return r;
};
},
/**
* Base add function
*
// Here is the full add routine that takes care of negative numbers.
// N1 is added to N2 and the result placed into RESULT. SCALE_MIN
// is the minimum scale for the result.
*
* @param {bc_num} n1
* @param {bc_num} n2
* @param {int} scaleMin
* @return bc_num
*/
bc_add: function bc_add(n1, n2, scaleMin) {
var sum, cmpRes, resScale;
if (n1.n_sign === n2.n_sign) {
sum = Libbcmath._bc_do_add(n1, n2, scaleMin);
sum.n_sign = n1.n_sign;
} else {
// subtraction must be done.
cmpRes = Libbcmath._bc_do_compare(n1, n2, false, false); // Compare magnitudes.
switch (cmpRes) {
case -1:
// n1 is less than n2, subtract n1 from n2.
sum = Libbcmath._bc_do_sub(n2, n1, scaleMin);
sum.n_sign = n2.n_sign;
break;
case 0:
// They are equal! return zero with the correct scale!
resScale = Libbcmath.MAX(scaleMin, Libbcmath.MAX(n1.n_scale, n2.n_scale));
sum = Libbcmath.bc_new_num(1, resScale);
Libbcmath.memset(sum.n_value, 0, 0, resScale + 1);
break;
case 1:
// n2 is less than n1, subtract n2 from n1.
sum = Libbcmath._bc_do_sub(n1, n2, scaleMin);
sum.n_sign = n1.n_sign;
}
}
return sum;
},
/**
* This is the "user callable" routine to compare numbers N1 and N2.
* @param {bc_num} n1
* @param {bc_num} n2
* @return int -1, 0, 1 (n1 < n2, ===, n1 > n2)
*/
bc_compare: function bc_compare(n1, n2) {
return Libbcmath._bc_do_compare(n1, n2, true, false);
},
_one_mult: function _one_mult(num, nPtr, size, digit, result, rPtr) {
var carry, value; // int
var nptr, rptr; // int pointers
if (digit === 0) {
Libbcmath.memset(result, 0, 0, size); // memset (result, 0, size);
} else {
if (digit === 1) {
Libbcmath.memcpy(result, rPtr, num, nPtr, size); // memcpy (result, num, size);
} else {
// Initialize
nptr = nPtr + size - 1; // nptr = (unsigned char *) (num+size-1);
rptr = rPtr + size - 1; // rptr = (unsigned char *) (result+size-1);
carry = 0;
while (size-- > 0) {
value = num[nptr--] * digit + carry; // value = *nptr-- * digit + carry;
result[rptr--] = value % Libbcmath.BASE; // @CHECK cint //*rptr-- = value % BASE;
carry = Math.floor(value / Libbcmath.BASE); // @CHECK cint //carry = value / BASE;
}
if (carry !== 0) {
result[rptr] = carry;
}
}
}
},
bc_divide: function bc_divide(n1, n2, scale) {
// var quot // bc_num return
var qval; // bc_num
var num1, num2; // string
var ptr1, ptr2, n2ptr, qptr; // int pointers
var scale1, val; // int
var len1, len2, scale2, qdigits, extra, count; // int
var qdig, qguess, borrow, carry; // int
var mval; // string
var zero; // char
var norm; // int
// var ptrs // return object from one_mul
// Test for divide by zero. (return failure)
if (Libbcmath.bc_is_zero(n2)) {
return -1;
}
// Test for zero divide by anything (return zero)
if (Libbcmath.bc_is_zero(n1)) {
return Libbcmath.bc_new_num(1, scale);
}
/* Test for n1 equals n2 (return 1 as n1 nor n2 are zero)
if (Libbcmath.bc_compare(n1, n2, Libbcmath.MAX(n1.n_scale, n2.n_scale)) === 0) {
quot=Libbcmath.bc_new_num(1, scale);
quot.n_value[0] = 1;
return quot;
}
*/
// Test for divide by 1. If it is we must truncate.
// @todo: check where scale > 0 too.. can't see why not
// (ie bc_is_zero - add bc_is_one function)
if (n2.n_scale === 0) {
if (n2.n_len === 1 && n2.n_value[0] === 1) {
qval = Libbcmath.bc_new_num(n1.n_len, scale); // qval = bc_new_num (n1->n_len, scale);
qval.n_sign = n1.n_sign === n2.n_sign ? Libbcmath.PLUS : Libbcmath.MINUS;
// memset (&qval->n_value[n1->n_len],0,scale):
Libbcmath.memset(qval.n_value, n1.n_len, 0, scale);
// memcpy (qval->n_value, n1->n_value, n1->n_len + MIN(n1->n_scale,scale)):
Libbcmath.memcpy(qval.n_value, 0, n1.n_value, 0, n1.n_len + Libbcmath.MIN(n1.n_scale, scale));
// can we return here? not in c src, but can't see why-not.
// return qval;
}
}
/* Set up the divide. Move the decimal point on n1 by n2's scale.
Remember, zeros on the end of num2 are wasted effort for dividing. */
scale2 = n2.n_scale; // scale2 = n2->n_scale;
n2ptr = n2.n_len + scale2 - 1; // n2ptr = (unsigned char *) n2.n_value+n2.n_len+scale2-1;
while (scale2 > 0 && n2.n_value[n2ptr--] === 0) {
scale2--;
}
len1 = n1.n_len + scale2;
scale1 = n1.n_scale - scale2;
if (scale1 < scale) {
extra = scale - scale1;
} else {
extra = 0;
}
// num1 = (unsigned char *) safe_emalloc (1, n1.n_len+n1.n_scale, extra+2):
num1 = Libbcmath.safe_emalloc(1, n1.n_len + n1.n_scale, extra + 2);
if (num1 === null) {
Libbcmath.bc_out_of_memory();
}
// memset (num1, 0, n1->n_len+n1->n_scale+extra+2):
Libbcmath.memset(num1, 0, 0, n1.n_len + n1.n_scale + extra + 2);
// memcpy (num1+1, n1.n_value, n1.n_len+n1.n_scale):
Libbcmath.memcpy(num1, 1, n1.n_value, 0, n1.n_len + n1.n_scale);
// len2 = n2->n_len + scale2:
len2 = n2.n_len + scale2;
// num2 = (unsigned char *) safe_emalloc (1, len2, 1):
num2 = Libbcmath.safe_emalloc(1, len2, 1);
if (num2 === null) {
Libbcmath.bc_out_of_memory();
}
// memcpy (num2, n2.n_value, len2):
Libbcmath.memcpy(num2, 0, n2.n_value, 0, len2);
// *(num2+len2) = 0:
num2[len2] = 0;
// n2ptr = num2:
n2ptr = 0;
// while (*n2ptr === 0):
while (num2[n2ptr] === 0) {
n2ptr++;
len2--;
}
// Calculate the number of quotient digits.
if (len2 > len1 + scale) {
qdigits = scale + 1;
zero = true;
} else {
zero = false;
if (len2 > len1) {
qdigits = scale + 1; // One for the zero integer part.
} else {
qdigits = len1 - len2 + scale + 1;
}
}
// Allocate and zero the storage for the quotient.
// qval = bc_new_num (qdigits-scale,scale);
qval = Libbcmath.bc_new_num(qdigits - scale, scale);
// memset (qval->n_value, 0, qdigits);
Libbcmath.memset(qval.n_value, 0, 0, qdigits);
// Allocate storage for the temporary storage mval.
// mval = (unsigned char *) safe_emalloc (1, len2, 1);
mval = Libbcmath.safe_emalloc(1, len2, 1);
if (mval === null) {
Libbcmath.bc_out_of_memory();
}
// Now for the full divide algorithm.
if (!zero) {
// Normalize
// norm = Libbcmath.cint(10 / (Libbcmath.cint(n2.n_value[n2ptr]) + 1));
// norm = 10 / ((int)*n2ptr + 1)
norm = Math.floor(10 / (n2.n_value[n2ptr] + 1)); // norm = 10 / ((int)*n2ptr + 1);
if (norm !== 1) {
// Libbcmath._one_mult(num1, len1+scale1+extra+1, norm, num1);
Libbcmath._one_mult(num1, 0, len1 + scale1 + extra + 1, norm, num1, 0);
// Libbcmath._one_mult(n2ptr, len2, norm, n2ptr);
Libbcmath._one_mult(n2.n_value, n2ptr, len2, norm, n2.n_value, n2ptr);
// @todo: Check: Is the pointer affected by the call? if so,
// maybe need to adjust points on return?
}
// Initialize divide loop.
qdig = 0;
if (len2 > len1) {
qptr = len2 - len1; // qptr = (unsigned char *) qval.n_value+len2-len1;
} else {
qptr = 0; // qptr = (unsigned char *) qval.n_value;
}
// Loop
while (qdig <= len1 + scale - len2) {
// Calculate the quotient digit guess.
if (n2.n_value[n2ptr] === num1[qdig]) {
qguess = 9;
} else {
qguess = Math.floor((num1[qdig] * 10 + num1[qdig + 1]) / n2.n_value[n2ptr]);
}
// Test qguess.
if (n2.n_value[n2ptr + 1] * qguess > (num1[qdig] * 10 + num1[qdig + 1] - n2.n_value[n2ptr] * qguess) * 10 + num1[qdig + 2]) {
qguess--;
// And again.
if (n2.n_value[n2ptr + 1] * qguess > (num1[qdig] * 10 + num1[qdig + 1] - n2.n_value[n2ptr] * qguess) * 10 + num1[qdig + 2]) {
qguess--;
}
}
// Multiply and subtract.
borrow = 0;
if (qguess !== 0) {
mval[0] = 0; //* mval = 0; // @CHECK is this to fix ptr2 < 0?
// _one_mult (n2ptr, len2, qguess, mval+1); // @CHECK
Libbcmath._one_mult(n2.n_value, n2ptr, len2, qguess, mval, 1);
ptr1 = qdig + len2; // (unsigned char *) num1+qdig+len2;
ptr2 = len2; // (unsigned char *) mval+len2;
// @todo: CHECK: Does a negative pointer return null?
// ptr2 can be < 0 here as ptr1 = len2, thus count < len2+1 will always fail ?
for (count = 0; count < len2 + 1; count++) {
if (ptr2 < 0) {
// val = Libbcmath.cint(num1[ptr1]) - 0 - borrow;
// val = (int) *ptr1 - (int) *ptr2-- - borrow;
val = num1[ptr1] - 0 - borrow; // val = (int) *ptr1 - (int) *ptr2-- - borrow;
} else {
// val = Libbcmath.cint(num1[ptr1]) - Libbcmath.cint(mval[ptr2--]) - borrow;
// val = (int) *ptr1 - (int) *ptr2-- - borrow;
// val = (int) *ptr1 - (int) *ptr2-- - borrow;
val = num1[ptr1] - mval[ptr2--] - borrow;
}
if (val < 0) {
val += 10;
borrow = 1;
} else {
borrow = 0;
}
num1[ptr1--] = val;
}
}
// Test for negative result.
if (borrow === 1) {
qguess--;
ptr1 = qdig + len2; // (unsigned char *) num1+qdig+len2;
ptr2 = len2 - 1; // (unsigned char *) n2ptr+len2-1;
carry = 0;
for (count = 0; count < len2; count++) {
if (ptr2 < 0) {
// val = Libbcmath.cint(num1[ptr1]) + 0 + carry;
// val = (int) *ptr1 + (int) *ptr2-- + carry;
// val = (int) *ptr1 + (int) *ptr2-- + carry;
val = num1[ptr1] + 0 + carry;
} else {
// val = Libbcmath.cint(num1[ptr1]) + Libbcmath.cint(n2.n_value[ptr2--]) + carry;
// val = (int) *ptr1 + (int) *ptr2-- + carry;
// val = (int) *ptr1 + (int) *ptr2-- + carry;
val = num1[ptr1] + n2.n_value[ptr2--] + carry;
}
if (val > 9) {
val -= 10;
carry = 1;
} else {
carry = 0;
}
num1[ptr1--] = val; //* ptr1-- = val;
}
if (carry === 1) {
// num1[ptr1] = Libbcmath.cint((num1[ptr1] + 1) % 10);
// *ptr1 = (*ptr1 + 1) % 10; // @CHECK
// *ptr1 = (*ptr1 + 1) % 10; // @CHECK
num1[ptr1] = (num1[ptr1] + 1) % 10;
}
}
// We now know the quotient digit.
qval.n_value[qptr++] = qguess; //* qptr++ = qguess;
qdig++;
}
}
// Clean up and return the number.
qval.n_sign = n1.n_sign === n2.n_sign ? Libbcmath.PLUS : Libbcmath.MINUS;
if (Libbcmath.bc_is_zero(qval)) {
qval.n_sign = Libbcmath.PLUS;
}
Libbcmath._bc_rm_leading_zeros(qval);
return qval;
// return 0; // Everything is OK.
},
MUL_BASE_DIGITS: 80,
MUL_SMALL_DIGITS: 80 / 4,
// #define MUL_SMALL_DIGITS mul_base_digits/4
/* The multiply routine. N2 times N1 is put int PROD with the scale of
the result being MIN(N2 scale+N1 scale, MAX (SCALE, N2 scale, N1 scale)).
*/
/**
* @param n1 bc_num
* @param n2 bc_num
* @param scale [int] optional
*/
bc_multiply: function bc_multiply(n1, n2, scale) {
var pval; // bc_num
var len1, len2; // int
var fullScale, prodScale; // int
// Initialize things.
len1 = n1.n_len + n1.n_scale;
len2 = n2.n_len + n2.n_scale;
fullScale = n1.n_scale + n2.n_scale;
prodScale = Libbcmath.MIN(fullScale, Libbcmath.MAX(scale, Libbcmath.MAX(n1.n_scale, n2.n_scale)));
// pval = Libbcmath.bc_init_num(); // allow pass by ref
// Do the multiply
pval = Libbcmath._bc_rec_mul(n1, len1, n2, len2, fullScale);
// Assign to prod and clean up the number.
pval.n_sign = n1.n_sign === n2.n_sign ? Libbcmath.PLUS : Libbcmath.MINUS;
// pval.n_value = pval.nPtr;
pval.n_len = len2 + len1 + 1 - fullScale;
pval.n_scale = prodScale;
Libbcmath._bc_rm_leading_zeros(pval);
if (Libbcmath.bc_is_zero(pval)) {
pval.n_sign = Libbcmath.PLUS;
}
// bc_free_num (prod);
return pval;
},
new_sub_num: function new_sub_num(length, scale, value) {
var ptr = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : 0;
var temp = new Libbcmath.bc_num(); // eslint-disable-line new-cap
temp.n_sign = Libbcmath.PLUS;
temp.n_len = length;
temp.n_scale = scale;
temp.n_value = Libbcmath.safe_emalloc(1, length + scale, 0);
Libbcmath.memcpy(temp.n_value, 0, value, ptr, length + scale);
return temp;
},
_bc_simp_mul: function _bc_simp_mul(n1, n1len, n2, n2len, fullScale) {
var prod; // bc_num
var n1ptr, n2ptr, pvptr; // char *n1ptr, *n2ptr, *pvptr;
var n1end, n2end; // char *n1end, *n2end; // To the end of n1 and n2.
var indx, sum, prodlen; // int indx, sum, prodlen;
prodlen = n1len + n2len + 1;
prod = Libbcmath.bc_new_num(prodlen, 0);
n1end = n1len - 1; // (char *) (n1->n_value + n1len - 1);
n2end = n2len - 1; // (char *) (n2->n_value + n2len - 1);
pvptr = prodlen - 1; // (char *) ((*prod)->n_value + prodlen - 1);
sum = 0;
// Here is the loop...
for (indx = 0; indx < prodlen - 1; indx++) {
// (char *) (n1end - MAX(0, indx-n2len+1));
n1ptr = n1end - Libbcmath.MAX(0, indx - n2len + 1);
// (char *) (n2end - MIN(indx, n2len-1));
n2ptr = n2end - Libbcmath.MIN(indx, n2len - 1);
while (n1ptr >= 0 && n2ptr <= n2end) {
// sum += *n1ptr-- * *n2ptr++;
sum += n1.n_value[n1ptr--] * n2.n_value[n2ptr++];
}
//* pvptr-- = sum % BASE;
prod.n_value[pvptr--] = Math.floor(sum % Libbcmath.BASE);
sum = Math.floor(sum / Libbcmath.BASE); // sum = sum / BASE;
}
prod.n_value[pvptr] = sum; //* pvptr = sum;
return prod;
},
/* A special adder/subtractor for the recursive divide and conquer
multiply algorithm. Note: if sub is called, accum must
be larger that what is being subtracted. Also, accum and val
must have n_scale = 0. (e.g. they must look like integers. *) */
_bc_shift_addsub: function _bc_shift_addsub(accum, val, shift, sub) {
var accp, valp; // signed char *accp, *valp;
var count, carry; // int count, carry;
count = val.n_len;
if (val.n_value[0] === 0) {
count--;
}
// assert (accum->n_len+accum->n_scale >= shift+count);
if (accum.n_len + accum.n_scale < shift + count) {
throw new Error('len + scale < shift + count'); // ?? I think that's what assert does :)
}
// Set up pointers and others
// (signed char *)(accum->n_value + accum->n_len + accum->n_scale - shift - 1);
accp = accum.n_len + accum.n_scale - shift - 1;
valp = val.n_len - 1; // (signed char *)(val->n_value + val->n_len - 1);
carry = 0;
if (sub) {
// Subtraction, carry is really borrow.
while (count--) {
accum.n_value[accp] -= val.n_value[valp--] + carry; //* accp -= *valp-- + carry;
if (accum.n_value[accp] < 0) {
// if (*accp < 0)
carry = 1;
accum.n_value[accp--] += Libbcmath.BASE; //* accp-- += BASE;
} else {
carry = 0;
accp--;
}
}
while (carry) {
accum.n_value[accp] -= carry; //* accp -= carry;
if (accum.n_value[accp] < 0) {
// if (*accp < 0)
accum.n_value[accp--] += Libbcmath.BASE; // *accp-- += BASE;
} else {
carry = 0;
}
}
} else {
// Addition
while (count--) {
accum.n_value[accp] += val.n_value[valp--] + carry; //* accp += *valp-- + carry;
if (accum.n_value[accp] > Libbcmath.BASE - 1) {
// if (*accp > (BASE-1))
carry = 1;
accum.n_value[accp--] -= Libbcmath.BASE; //* accp-- -= BASE;
} else {
carry = 0;
accp--;
}
}
while (carry) {
accum.n_value[accp] += carry; //* accp += carry;
if (accum.n_value[accp] > Libbcmath.BASE - 1) {
// if (*accp > (BASE-1))
accum.n_value[accp--] -= Libbcmath.BASE; //* accp-- -= BASE;
} else {
carry = 0;
}
}
}
return true; // accum is the pass-by-reference return
},
/* Recursive divide and conquer multiply algorithm.
based on
Let u = u0 + u1*(b^n)
Let v = v0 + v1*(b^n)
Then uv = (B^2n+B^n)*u1*v1 + B^n*(u1-u0)*(v0-v1) + (B^n+1)*u0*v0
B is the base of storage, number of digits in u1,u0 close to equal.
*/
_bc_rec_mul: function _bc_rec_mul(u, ulen, v, vlen, fullScale) {
var prod; // @return
var u0, u1, v0, v1; // bc_num
// var u0len,
// var v0len // int
var m1, m2, m3, d1, d2; // bc_num
var n, prodlen, m1zero; // int
var d1len, d2len; // int
// Base case?
if (ulen + vlen < Libbcmath.MUL_BASE_DIGITS || ulen < Libbcmath.MUL_SMALL_DIGITS || vlen < Libbcmath.MUL_SMALL_DIGITS) {
return Libbcmath._bc_simp_mul(u, ulen, v, vlen, fullScale);
}
// Calculate n -- the u and v split point in digits.
n = Math.floor((Libbcmath.MAX(ulen, vlen) + 1) / 2);
// Split u and v.
if (ulen < n) {
u1 = Libbcmath.bc_init_num(); // u1 = bc_copy_num (BCG(_zero_));
u0 = Libbcmath.new_sub_num(ulen, 0, u.n_value);
} else {
u1 = Libbcmath.new_sub_num(ulen - n, 0, u.n_value);
u0 = Libbcmath.new_sub_num(n, 0, u.n_value, ulen - n);
}
if (vlen < n) {
v1 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_));
v0 = Libbcmath.new_sub_num(vlen, 0, v.n_value);
} else {
v1 = Libbcmath.new_sub_num(vlen - n, 0, v.n_value);
v0 = Libbcmath.new_sub_num(n, 0, v.n_value, vlen - n);
}
Libbcmath._bc_rm_leading_zeros(u1);
Libbcmath._bc_rm_leading_zeros(u0);
// var u0len = u0.n_len
Libbcmath._bc_rm_leading_zeros(v1);
Libbcmath._bc_rm_leading_zeros(v0);
// var v0len = v0.n_len
m1zero = Libbcmath.bc_is_zero(u1) || Libbcmath.bc_is_zero(v1);
// Calculate sub results ...
d1 = Libbcmath.bc_init_num(); // needed?
d2 = Libbcmath.bc_init_num(); // needed?
d1 = Libbcmath.bc_sub(u1, u0, 0);
d1len = d1.n_len;
d2 = Libbcmath.bc_sub(v0, v1, 0);
d2len = d2.n_len;
// Do recursive multiplies and shifted adds.
if (m1zero) {
m1 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_));
} else {
// m1 = Libbcmath.bc_init_num(); //allow pass-by-ref
m1 = Libbcmath._bc_rec_mul(u1, u1.n_len, v1, v1.n_len, 0);
}
if (Libbcmath.bc_is_zero(d1) || Libbcmath.bc_is_zero(d2)) {
m2 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_));
} else {
// m2 = Libbcmath.bc_init_num(); //allow pass-by-ref
m2 = Libbcmath._bc_rec_mul(d1, d1len, d2, d2len, 0);
}
if (Libbcmath.bc_is_zero(u0) || Libbcmath.bc_is_zero(v0)) {
m3 = Libbcmath.bc_init_num(); // bc_copy_num (BCG(_zero_));
} else {
// m3 = Libbcmath.bc_init_num(); //allow pass-by-ref
m3 = Libbcmath._bc_rec_mul(u0, u0.n_len, v0, v0.n_len, 0);
}
// Initialize product
prodlen = ulen + vlen + 1;
prod = Libbcmath.bc_new_num(prodlen, 0);
if (!m1zero) {
Libbcmath._bc_shift_addsub(prod, m1, 2 * n, 0);
Libbcmath._bc_shift_addsub(prod, m1, n, 0);
}
Libbcmath._bc_shift_addsub(prod, m3, n, 0);
Libbcmath._bc_shift_addsub(prod, m3, 0, 0);
Libbcmath._bc_shift_addsub(prod, m2, n, d1.n_sign !== d2.n_sign);
return prod;
// Now clean up!
// bc_free_num (&u1);
// bc_free_num (&u0);
// bc_free_num (&v1);
// bc_free_num (&m1);
// bc_free_num (&v0);
// bc_free_num (&m2);
// bc_free_num (&m3);
// bc_free_num (&d1);
// bc_free_num (&d2);
},
/**
*
* @param {bc_num} n1
* @param {bc_num} n2
* @param {boolean} useSign
* @param {boolean} ignoreLast
* @return -1, 0, 1 (see bc_compare)
*/
_bc_do_compare: function _bc_do_compare(n1, n2, useSign, ignoreLast) {
var n1ptr, n2ptr; // int
var count; // int
// First, compare signs.
if (useSign && n1.n_sign !== n2.n_sign) {
if (n1.n_sign === Libbcmath.PLUS) {
return 1; // Positive N1 > Negative N2
} else {
return -1; // Negative N1 < Positive N1
}
}
// Now compare the magnitude.
if (n1.n_len !== n2.n_len) {
if (n1.n_len > n2.n_len) {
// Magnitude of n1 > n2.
if (!useSign || n1.n_sign === Libbcmath.PLUS) {
return 1;
} else {
return -1;
}
} else {
// Magnitude of n1 < n2.
if (!useSign || n1.n_sign === Libbcmath.PLUS) {
return -1;
} else {
return 1;
}
}
}
/* If we get here, they have the same number of integer digits.
check the integer part and the equal length part of the fraction. */
count = n1.n_len + Math.min(n1.n_scale, n2.n_scale);
n1ptr = 0;
n2ptr = 0;
while (count > 0 && n1.n_value[n1ptr] === n2.n_value[n2ptr]) {
n1ptr++;
n2ptr++;
count--;
}
if (ignoreLast && count === 1 && n1.n_scale === n2.n_scale) {
return 0;
}
if (count !== 0) {
if (n1.n_value[n1ptr] > n2.n_value[n2ptr]) {
// Magnitude of n1 > n2.
if (!useSign || n1.n_sign === Libbcmath.PLUS) {
return 1;
} else {
return -1;
}
} else {
// Magnitude of n1 < n2.
if (!useSign || n1.n_sign === Libbcmath.PLUS) {
return -1;
} else {
return 1;
}
}
}
// They are equal up to the last part of the equal part of the fraction.
if (n1.n_scale !== n2.n_scale) {
if (n1.n_scale > n2.n_scale) {
for (count = n1.n_scale - n2.n_scale; count > 0; count--) {
if (n1.n_value[n1ptr++] !== 0) {
// Magnitude of n1 > n2.
if (!useSign || n1.n_sign === Libbcmath.PLUS) {
return 1;
} else {
return -1;
}
}
}
} else {
for (count = n2.n_scale - n1.n_scale; count > 0; count--) {
if (n2.n_value[n2ptr++] !== 0) {
// Magnitude of n1 < n2.
if (!useSign || n1.n_sign === Libbcmath.PLUS) {
return -1;
} else {
return 1;
}
}
}
}
}
// They must be equal!
return 0;
},
/* Here is the full subtract routine that takes care of negative numbers.
N2 is subtracted from N1 and the result placed in RESULT. SCALE_MIN
is the minimum scale for the result. */
bc_sub: function bc_sub(n1, n2, scaleMin) {
var diff; // bc_num
var cmpRes, resScale; // int
if (n1.n_sign !== n2.n_sign) {
diff = Libbcmath._bc_do_add(n1, n2, scaleMin);
diff.n_sign = n1.n_sign;
} else {
// subtraction must be done.
// Compare magnitudes.
cmpRes = Libbcmath._bc_do_compare(n1, n2, false, false);
switch (cmpRes) {
case -1:
// n1 is less than n2, subtract n1 from n2.
diff = Libbcmath._bc_do_sub(n2, n1, scaleMin);
diff.n_sign = n2.n_sign === Libbcmath.PLUS ? Libbcmath.MINUS : Libbcmath.PLUS;
break;
case 0:
// They are equal! return zero!
resScale = Libbcmath.MAX(scaleMin, Libbcmath.MAX(n1.n_scale, n2.n_scale));
diff = Libbcmath.bc_new_num(1, resScale);
Libbcmath.memset(diff.n_value, 0, 0, resScale + 1);
break;
case 1:
// n2 is less than n1, subtract n2 from n1.
diff = Libbcmath._bc_do_sub(n1, n2, scaleMin);
diff.n_sign = n1.n_sign;
break;
}
}
// Clean up and return.
// bc_free_num (result);
//* result = diff;
return diff;
},
_bc_do_add: function _bc_do_add(n1, n2, scaleMin) {
var sum; // bc_num
var sumScale, sumDigits; // int
var n1ptr, n2ptr, sumptr; // int
var carry, n1bytes, n2bytes; // int
var tmp; // int
// Prepare sum.
sumScale = Libbcmath.MAX(n1.n_scale, n2.n_scale);
sumDigits = Libbcmath.MAX(n1.n_len, n2.n_len) + 1;
sum = Libbcmath.bc_new_num(sumDigits, Libbcmath.MAX(sumScale, scaleMin));
// Start with the fraction part. Initialize the pointers.
n1bytes = n1.n_scale;
n2bytes = n2.n_scale;
n1ptr = n1.n_len + n1bytes - 1;
n2ptr = n2.n_len + n2bytes - 1;
sumptr = sumScale + sumDigits - 1;
// Add the fraction part. First copy the longer fraction
// (ie when adding 1.2345 to 1 we know .2345 is correct already) .
if (n1bytes !== n2bytes) {
if (n1bytes > n2bytes) {
// n1 has more dp then n2
while (n1bytes > n2bytes) {
sum.n_value[sumptr--] = n1.n_value[n1ptr--];
// *sumptr-- = *n1ptr--;
n1bytes--;
}
} else {
// n2 has more dp then n1
while (n2bytes > n1bytes) {
sum.n_value[sumptr--] = n2.n_value[n2ptr--];
// *sumptr-- = *n2ptr--;
n2bytes--;
}
}
}
// Now add the remaining fraction part and equal size integer parts.
n1bytes += n1.n_len;
n2bytes += n2.n_len;
carry = 0;
while (n1bytes > 0 && n2bytes > 0) {
// add the two numbers together
tmp = n1.n_value[n1ptr--] + n2.n_value[n2ptr--] + carry;
// *sumptr = *n1ptr-- + *n2ptr-- + carry;
// check if they are >= 10 (impossible to be more then 18)
if (tmp >= Libbcmath.BASE) {
carry = 1;
tmp -= Libbcmath.BASE; // yep, subtract 10, add a carry
} else {
carry = 0;
}
sum.n_value[sumptr] = tmp;
sumptr--;
n1bytes--;
n2bytes--;
}
// Now add carry the [rest of the] longer integer part.
if (n1bytes === 0) {
// n2 is a bigger number then n1
while (n2bytes-- > 0) {
tmp = n2.n_value[n2ptr--] + carry;
// *sumptr = *n2ptr-- + carry;
if (tmp >= Libbcmath.BASE) {
carry = 1;
tmp -= Libbcmath.BASE;
} else {
carry = 0;
}
sum.n_value[sumptr--] = tmp;
}
} else {
// n1 is bigger then n2..
while (n1bytes-- > 0) {
tmp = n1.n_value[n1ptr--] + carry;
// *sumptr = *n1ptr-- + carry;
if (tmp >= Libbcmath.BASE) {
carry = 1;
tmp -= Libbcmath.BASE;
} else {
carry = 0;
}
sum.n_value[sumptr--] = tmp;
}
}
// Set final carry.
if (carry === 1) {
sum.n_value[sumptr] += 1;
// *sumptr += 1;
}
// Adjust sum and return.
Libbcmath._bc_rm_leading_zeros(sum);
return sum;
},
/**
* Perform a subtraction
*
* Perform subtraction: N2 is subtracted from N1 and the value is
* returned. The signs of N1 and N2 are ignored. Also, N1 is
* assumed to be larger than N2. SCALE_MIN is the minimum scale
* of the result.
*
* Basic school maths says to subtract 2 numbers..
* 1. make them the same length, the decimal places, and the integer part
* 2. start from the right and subtract the two numbers from each other
* 3. if the sum of the 2 numbers < 0, carry -1 to the next set and add 10
* (ie 18 > carry 1 becomes 8). thus 0.9 + 0.9 = 1.8
*
* @param {bc_num} n1
* @param {bc_num} n2
* @param {int} scaleMin
* @return bc_num
*/
_bc_do_sub: function _bc_do_sub(n1, n2, scaleMin) {
var diff; // bc_num
var diffScale, diffLen; // int
var minScale, minLen; // int
var n1ptr, n2ptr, diffptr; // int
var borrow, count, val; // int
// Allocate temporary storage.
diffLen = Libbcmath.MAX(n1.n_len, n2.n_len);
diffScale = Libbcmath.MAX(n1.n_scale, n2.n_scale);
minLen = Libbcmath.MIN(n1.n_len, n2.n_len);
minScale = Libbcmath.MIN(n1.n_scale, n2.n_scale);
diff = Libbcmath.bc_new_num(diffLen, Libbcmath.MAX(diffScale, scaleMin));
/* Not needed?
// Zero extra digits made by scaleMin.
if (scaleMin > diffScale) {
diffptr = (char *) (diff->n_value + diffLen + diffScale);
for (count = scaleMin - diffScale; count > 0; count--) {
*diffptr++ = 0;
}
}
*/
// Initialize the subtract.
n1ptr = n1.n_len + n1.n_scale - 1;
n2ptr = n2.n_len + n2.n_scale - 1;
diffptr = diffLen + diffScale - 1;
// Subtract the numbers.
borrow = 0;
// Take care of the longer scaled number.
if (n1.n_scale !== minScale) {
// n1 has the longer scale
for (count = n1.n_scale - minScale; count > 0; count--) {
diff.n_value[diffptr--] = n1.n_value[n1ptr--];
// *diffptr-- = *n1ptr--;
}
} else {
// n2 has the longer scale
for (count = n2.n_scale - minScale; count > 0; count--) {
val = 0 - n2.n_value[n2ptr--] - borrow;
// val = - *n2ptr-- - borrow;
if (val < 0) {
val += Libbcmath.BASE;
borrow = 1;
} else {
borrow = 0;
}
diff.n_value[diffptr--] = val;
//* diffptr-- = val;
}
}
// Now do the equal length scale and integer parts.
for (count = 0; count < minLen + minScale; count++) {
val = n1.n_value[n1ptr--] - n2.n_value[n2ptr--] - borrow;
// val = *n1ptr-- - *n2ptr-- - borrow;
if (val < 0) {
val += Libbcmath.BASE;
borrow = 1;
} else {
borrow = 0;
}
diff.n_value[diffptr--] = val;
//* diffptr-- = val;
}
// If n1 has more digits then n2, we now do that subtract.
if (diffLen !== minLen) {
for (count = diffLen - minLen; count > 0; count--) {
val = n1.n_value[n1ptr--] - borrow;
// val = *n1ptr-- - borrow;
if (val < 0) {
val += Libbcmath.BASE;
borrow = 1;
} else {
borrow = 0;
}
diff.n_value[diffptr--] = val;
}
}
// Clean up and return.
Libbcmath._bc_rm_leading_zeros(diff);
return diff;
},
/**
*
* @param {int} length
* @param {int} scale
* @return bc_num
*/
bc_new_num: function bc_new_num(length, scale) {
var temp; // bc_num
temp = new Libbcmath.bc_num(); // eslint-disable-line new-cap
temp.n_sign = Libbcmath.PLUS;
temp.n_len = length;
temp.n_scale = scale;
temp.n_value = Libbcmath.safe_emalloc(1, length + scale, 0);
Libbcmath.memset(temp.n_value, 0, 0, length + scale);
return temp;
},
safe_emalloc: function safe_emalloc(size, len, extra) {
return Array(size * len + extra);
},
/**
* Create a new number
*/
bc_init_num: function bc_init_num() {
return new Libbcmath.bc_new_num(1, 0); // eslint-disable-line new-cap
},
_bc_rm_leading_zeros: function _bc_rm_leading_zeros(num) {
// We can move n_value to point to the first non zero digit!
while (num.n_value[0] === 0 && num.n_len > 1) {
num.n_value.shift();
num.n_len--;
}
},
/**
* Convert to bc_num detecting scale
*/
php_str2num: function php_str2num(str) {
var p;
p = str.indexOf('.');
if (p === -1) {
return Libbcmath.bc_str2num(str, 0);
} else {
return Libbcmath.bc_str2num(str, str.length - p);
}
},
CH_VAL: function CH_VAL(c) {
return c - '0'; // ??
},
BCD_CHAR: function BCD_CHAR(d) {
return d + '0'; // ??
},
isdigit: function isdigit(c) {
return isNaN(parseInt(c, 10));
},
bc_str2num: function bc_str2num(strIn, scale) {
var str, num, ptr, digits, strscale, zeroInt, nptr;
// remove any non-expected characters
// Check for valid number and count digits.
str = strIn.split(''); // convert to array
ptr = 0; // str
digits = 0;
strscale = 0;
zeroInt = false;
if (str[ptr] === '+' || str[ptr] === '-') {
ptr++; // Sign
}
while (str[ptr] === '0') {
ptr++; // Skip leading zeros.
}
// while (Libbcmath.isdigit(str[ptr])) {
while (str[ptr] % 1 === 0) {
// Libbcmath.isdigit(str[ptr])) {
ptr++;
digits++; // digits
}
if (str[ptr] === '.') {
ptr++; // decimal point
}
// while (Libbcmath.isdigit(str[ptr])) {
while (str[ptr] % 1 === 0) {
// Libbcmath.isdigit(str[ptr])) {
ptr++;
strscale++; // digits
}
if (str[ptr] || digits + strscale === 0) {
// invalid number, return 0
return Libbcmath.bc_init_num();
//* num = bc_copy_num (BCG(_zero_));
}
// Adjust numbers and allocate storage and initialize fields.
strscale = Libbcmath.MIN(strscale, scale);
if (digits === 0) {
zeroInt = true;
digits = 1;
}
num = Libbcmath.bc_new_num(digits, strscale);
// Build the whole number.
ptr = 0; // str
if (str[ptr] === '-') {
num.n_sign = Libbcmath.MINUS;
// (*num)->n_sign = MINUS;
ptr++;
} else {
num.n_sign = Libbcmath.PLUS;
// (*num)->n_sign = PLUS;
if (str[ptr] === '+') {
ptr++;
}
}
while (str[ptr] === '0') {
ptr++; // Skip leading zeros.
}
nptr = 0; // (*num)->n_value;
if (zeroInt) {
num.n_value[nptr++] = 0;
digits = 0;
}
for (; digits > 0; digits--) {
num.n_value[nptr++] = Libbcmath.CH_VAL(str[ptr++]);
//* nptr++ = CH_VAL(*ptr++);
}
// Build the fractional part.
if (strscale > 0) {
ptr++; // skip the decimal point!
for (; strscale > 0; strscale--) {
num.n_value[nptr++] = Libbcmath.CH_VAL(str[ptr++]);
}
}
return num;
},
cint: function cint(v) {
if (typeof v === 'undefined') {
v = 0;
}
var x = parseInt(v, 10);
if (isNaN(x)) {
x = 0;
}
return x;
},
/**
* Basic min function
* @param {int} a
* @param {int} b
*/
MIN: function MIN(a, b) {
return a > b ? b : a;
},
/**
* Basic max function
* @param {int} a
* @param {int} b
*/
MAX: function MAX(a, b) {
return a > b ? a : b;
},
/**
* Basic odd function
* @param {int} a
*/
ODD: function ODD(a) {
return a & 1;
},
/**
* replicate c function
* @param {array} r return (by reference)
* @param {int} ptr
* @param {string} chr char to fill
* @param {int} len length to fill
*/
memset: function memset(r, ptr, chr, len) {
var i;
for (i = 0; i < len; i++) {
r[ptr + i] = chr;
}
},
/**
* Replacement c function
* Obviously can't work like c does, so we've added an "offset"
* param so you could do memcpy(dest+1, src, len) as memcpy(dest, 1, src, len)
* Also only works on arrays
*/
memcpy: function memcpy(dest, ptr, src, srcptr, len) {
var i;
for (i = 0; i < len; i++) {
dest[ptr + i] = src[srcptr + i];
}
return true;
},
/**
* Determine if the number specified is zero or not
* @param {bc_num} num number to check
* @return boolean true when zero, false when not zero.
*/
bc_is_zero: function bc_is_zero(num) {
var count; // int
var nptr; // int
// Quick check.
// if (num === BCG(_zero_)) return TRUE;
// Initialize
count = num.n_len + num.n_scale;
nptr = 0; // num->n_value;
// The check
while (count > 0 && num.n_value[nptr++] === 0) {
count--;
}
if (count !== 0) {
return false;
} else {
return true;
}
},
bc_out_of_memory: function bc_out_of_memory() {
throw new Error('(BC) Out of memory');
}
};
return Libbcmath;
};
//# sourceMappingURL=_bc.js.map
|