diff options
Diffstat (limited to 'model/utils/loss.py')
-rw-r--r-- | model/utils/loss.py | 97 |
1 files changed, 97 insertions, 0 deletions
diff --git a/model/utils/loss.py b/model/utils/loss.py new file mode 100644 index 0000000..829bfd3 --- /dev/null +++ b/model/utils/loss.py @@ -0,0 +1,97 @@ +import torch as th +from torch import nn +from model.utils.nn_utils import SharedObjectsToBatch, LambdaModule +from einops import rearrange, repeat, reduce + +__author__ = "Manuel Traub" +class PositionLoss(nn.Module): + def __init__(self, num_objects: int): + super(PositionLoss, self).__init__() + + self.to_batch = LambdaModule(lambda x: rearrange(x, 'b (o c) -> (b o) c', o = num_objects)) + + def forward(self, position, position_last, slot_mask): + + slot_mask = rearrange(slot_mask, 'b o -> (b o) 1 1 1') + position = self.to_batch(position) + position_last = self.to_batch(position_last).detach() + + return th.mean(slot_mask * (position - position_last)**2) + +class ObjectModulator(nn.Module): + def __init__(self, num_objects: int): + super(ObjectModulator, self).__init__() + self.to_batch = LambdaModule(lambda x: rearrange(x, 'b (o c) -> (b o) c', o = num_objects)) + self.to_shared = LambdaModule(lambda x: rearrange(x, '(b o) c -> b (o c)', o = num_objects)) + self.position = None + self.gestalt = None + + def reset_state(self): + self.position = None + self.gestalt = None + + def forward(self, position: th.Tensor, gestalt: th.Tensor, slot_mask: th.Tensor): + + position = self.to_batch(position) + gestalt = self.to_batch(gestalt) + slot_mask = self.to_batch(slot_mask) + + if self.position is None or self.gestalt is None: + self.position = position.detach() + self.gestalt = gestalt.detach() + return self.to_shared(position), self.to_shared(gestalt) + + _position = slot_mask * position + (1 - slot_mask) * self.position + position = th.cat((position[:,:-1], _position[:,-1:]), dim=1) # keep the position of the objects fixed + gestalt = slot_mask * gestalt + (1 - slot_mask) * self.gestalt + + self.gestalt = gestalt.detach() + self.position = position.detach() + + return self.to_shared(position), self.to_shared(gestalt) + +class MoveToCenter(nn.Module): + def __init__(self, num_objects: int): + super(MoveToCenter, self).__init__() + + self.to_batch2d = SharedObjectsToBatch(num_objects) + self.to_batch = LambdaModule(lambda x: rearrange(x, 'b (o c) -> (b o) c', o = num_objects)) + + def forward(self, input: th.Tensor, position: th.Tensor): + + input = self.to_batch2d(input) # b (o c) h w -> (b o) c h w + position = self.to_batch(position).detach() + position = th.stack((position[:,1], position[:,0]), dim=1) + + theta = th.tensor([1, 0, 0, 1], dtype=th.float, device=input.device).view(1,2,2) + theta = repeat(theta, '1 a b -> n a b', n=input.shape[0]) + + position = rearrange(position, 'b c -> b c 1') + theta = th.cat((theta, position), dim=2) + + grid = nn.functional.affine_grid(theta, input.shape, align_corners=False) + output = nn.functional.grid_sample(input, grid, align_corners=False) + + return output + +class TranslationInvariantObjectLoss(nn.Module): + def __init__(self, num_objects: int): + super(TranslationInvariantObjectLoss, self).__init__() + + self.move_to_center = MoveToCenter(num_objects) + self.to_batch = SharedObjectsToBatch(num_objects) + + def forward( + self, + slot_mask: th.Tensor, + object1: th.Tensor, + position1: th.Tensor, + object2: th.Tensor, + position2: th.Tensor, + ): + slot_mask = rearrange(slot_mask, 'b o -> (b o) 1 1 1') + object1 = self.move_to_center(th.sigmoid(object1 - 2.5), position1) + object2 = self.move_to_center(th.sigmoid(object2 - 2.5), position2) + + return th.mean(slot_mask * (object1 - object2)**2) + |