1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
import torch.nn as nn
import torch as th
from model.nn.residual import ResidualBlock, SkipConnection, LinearResidual
from model.nn.encoder import PatchDownConv
from model.nn.encoder import AggressiveConvToGestalt
from model.nn.decoder import PatchUpscale
from model.utils.nn_utils import LambdaModule, Binarize
from einops import rearrange, repeat, reduce
from typing import Tuple
__author__ = "Manuel Traub"
class BackgroundEnhancer(nn.Module):
def __init__(
self,
input_size: Tuple[int, int],
img_channels: int,
level1_channels,
latent_channels,
gestalt_size,
batch_size,
depth
):
super(BackgroundEnhancer, self).__init__()
latent_size = [input_size[0] // 16, input_size[1] // 16]
self.input_size = input_size
self.register_buffer('init', th.zeros(1).long())
self.alpha = nn.Parameter(th.zeros(1)+1e-16)
self.level = 1
self.down_level2 = nn.Sequential(
PatchDownConv(img_channels*2+2, level1_channels, alpha = 1e-16),
*[ResidualBlock(level1_channels, level1_channels, alpha_residual = True) for i in range(depth)]
)
self.down_level1 = nn.Sequential(
PatchDownConv(level1_channels, latent_channels, alpha = 1),
*[ResidualBlock(latent_channels, latent_channels, alpha_residual = False) for i in range(depth)]
)
self.down_level0 = nn.Sequential(
*[ResidualBlock(latent_channels, latent_channels) for i in range(depth)],
AggressiveConvToGestalt(latent_channels, gestalt_size, latent_size),
LambdaModule(lambda x: rearrange(x, 'b c 1 1 -> b c')),
Binarize(),
)
self.bias = nn.Parameter(th.zeros((1, gestalt_size, *latent_size)))
self.to_grid = nn.Sequential(
LinearResidual(gestalt_size, gestalt_size, input_relu = False),
LambdaModule(lambda x: rearrange(x, 'b c -> b c 1 1')),
LambdaModule(lambda x: x + self.bias),
*[ResidualBlock(gestalt_size, gestalt_size) for i in range(depth)],
)
self.up_level0 = nn.Sequential(
ResidualBlock(gestalt_size, latent_channels),
*[ResidualBlock(latent_channels, latent_channels) for i in range(depth)],
)
self.up_level1 = nn.Sequential(
*[ResidualBlock(latent_channels, latent_channels, alpha_residual = False) for i in range(depth)],
PatchUpscale(latent_channels, level1_channels, alpha = 1),
)
self.up_level2 = nn.Sequential(
*[ResidualBlock(level1_channels, level1_channels, alpha_residual = True) for i in range(depth)],
PatchUpscale(level1_channels, img_channels, alpha = 1e-16),
)
self.to_channels = nn.ModuleList([
SkipConnection(img_channels*2+2, latent_channels),
SkipConnection(img_channels*2+2, level1_channels),
SkipConnection(img_channels*2+2, img_channels*2+2),
])
self.to_img = nn.ModuleList([
SkipConnection(latent_channels, img_channels),
SkipConnection(level1_channels, img_channels),
SkipConnection(img_channels, img_channels),
])
self.mask = nn.Parameter(th.ones(1, 1, *input_size) * 10)
self.object = nn.Parameter(th.ones(1, img_channels, *input_size))
self.register_buffer('latent', th.zeros((batch_size, gestalt_size)), persistent=False)
def get_init(self):
return self.init.item()
def step_init(self):
self.init = self.init + 1
def detach(self):
self.latent = self.latent.detach()
def reset_state(self):
self.latent = th.zeros_like(self.latent)
def set_level(self, level):
self.level = level
def encoder(self, input):
latent = self.to_channels[self.level](input)
if self.level >= 2:
latent = self.down_level2(latent)
if self.level >= 1:
latent = self.down_level1(latent)
return self.down_level0(latent)
def get_last_latent_gird(self):
return self.to_grid(self.latent) * self.alpha
def decoder(self, latent, input):
grid = self.to_grid(latent)
latent = self.up_level0(grid)
if self.level >= 1:
latent = self.up_level1(latent)
if self.level >= 2:
latent = self.up_level2(latent)
object = reduce(self.object, '1 c (h h2) (w w2) -> 1 c h w', 'mean', h = input.shape[2], w = input.shape[3])
object = repeat(object, '1 c h w -> b c h w', b = input.shape[0])
return th.sigmoid(object + self.to_img[self.level](latent)), grid
def forward(self, input: th.Tensor, error: th.Tensor = None, mask: th.Tensor = None, only_mask: bool = False):
if only_mask:
mask = reduce(self.mask, '1 1 (h h2) (w w2) -> 1 1 h w', 'mean', h = input.shape[2], w = input.shape[3])
mask = repeat(mask, '1 1 h w -> b 1 h w', b = input.shape[0]) * 0.1
return mask
last_bg = self.decoder(self.latent, input)[0]
bg_error = th.sqrt(reduce((input - last_bg)**2, 'b c h w -> b 1 h w', 'mean')).detach()
bg_mask = (bg_error < th.mean(bg_error) + th.std(bg_error)).float().detach()
if error is None or self.get_init() < 2:
error = bg_error
if mask is None or self.get_init() < 2:
mask = bg_mask
self.latent = self.encoder(th.cat((input, last_bg, error, mask), dim=1))
mask = reduce(self.mask, '1 1 (h h2) (w w2) -> 1 1 h w', 'mean', h = input.shape[2], w = input.shape[3])
mask = repeat(mask, '1 1 h w -> b 1 h w', b = input.shape[0]) * 0.1
background, grid = self.decoder(self.latent, input)
if self.get_init() < 1:
return mask, background
if self.get_init() < 2:
return mask, th.zeros_like(background), th.zeros_like(grid), background
return mask, background, grid * self.alpha, background
|