1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
import torch.nn as nn
import torch as th
from model.nn.residual import SkipConnection, ResidualBlock
from model.utils.nn_utils import Gaus2D, SharedObjectsToBatch, BatchToSharedObjects, Prioritize
from einops import rearrange, repeat, reduce
from typing import Tuple, Union, List
__author__ = "Manuel Traub"
class PriorityEncoder(nn.Module):
def __init__(self, num_objects, batch_size):
super(PriorityEncoder, self).__init__()
self.num_objects = num_objects
self.register_buffer("indices", repeat(th.arange(num_objects), 'a -> b a', b=batch_size), persistent=False)
self.index_factor = nn.Parameter(th.ones(1))
self.priority_factor = nn.Parameter(th.ones(1))
def forward(self, priority: th.Tensor) -> th.Tensor:
if priority is None:
return None
priority = priority * self.num_objects + th.randn_like(priority) * 0.1
priority = priority * self.priority_factor
priority = priority + self.indices * self.index_factor
return priority * 25
class GestaltPositionMerge(nn.Module):
def __init__(
self,
latent_size: Union[int, Tuple[int, int]],
num_objects: int,
batch_size: int
):
super(GestaltPositionMerge, self).__init__()
self.num_objects = num_objects
self.gaus2d = Gaus2D(size=latent_size)
self.to_batch = SharedObjectsToBatch(num_objects)
self.to_shared = BatchToSharedObjects(num_objects)
self.prioritize = Prioritize(num_objects)
self.priority_encoder = PriorityEncoder(num_objects, batch_size)
def forward(self, position, gestalt, priority):
position = rearrange(position, 'b (o c) -> (b o) c', o = self.num_objects)
gestalt = rearrange(gestalt, 'b (o c) -> (b o) c 1 1', o = self.num_objects)
priority = self.priority_encoder(priority)
position = self.gaus2d(position)
position = self.to_batch(self.prioritize(self.to_shared(position), priority))
return position * gestalt
class PatchUpscale(nn.Module):
def __init__(self, in_channels, out_channels, scale_factor = 4, alpha = 1):
super(PatchUpscale, self).__init__()
assert in_channels % out_channels == 0
self.skip = SkipConnection(in_channels, out_channels, scale_factor=scale_factor)
self.residual = nn.Sequential(
nn.ReLU(),
nn.Conv2d(
in_channels = in_channels,
out_channels = in_channels,
kernel_size = 3,
padding = 1
),
nn.ReLU(),
nn.ConvTranspose2d(
in_channels = in_channels,
out_channels = out_channels,
kernel_size = scale_factor,
stride = scale_factor,
),
)
self.alpha = nn.Parameter(th.zeros(1) + alpha)
def forward(self, input):
return self.skip(input) + self.alpha * self.residual(input)
class LociDecoder(nn.Module):
def __init__(
self,
latent_size: Union[int, Tuple[int, int]],
gestalt_size: int,
num_objects: int,
img_channels: int,
hidden_channels: int,
level1_channels: int,
num_layers: int,
batch_size: int
):
super(LociDecoder, self).__init__()
self.to_batch = SharedObjectsToBatch(num_objects)
self.to_shared = BatchToSharedObjects(num_objects)
self.level = 1
assert(level1_channels % img_channels == 0)
level1_factor = level1_channels // img_channels
print(f"Level1 channels: {level1_channels}")
self.merge = GestaltPositionMerge(
latent_size = latent_size,
num_objects = num_objects,
batch_size = batch_size
)
self.layer0 = nn.Sequential(
ResidualBlock(gestalt_size, hidden_channels, input_nonlinearity = False),
*[ResidualBlock(hidden_channels, hidden_channels) for _ in range(num_layers-1)],
)
self.to_mask_level0 = ResidualBlock(hidden_channels, hidden_channels)
self.to_mask_level1 = PatchUpscale(hidden_channels, 1)
self.to_mask_level2 = nn.Sequential(
ResidualBlock(hidden_channels, hidden_channels),
ResidualBlock(hidden_channels, hidden_channels),
PatchUpscale(hidden_channels, level1_factor, alpha = 1),
PatchUpscale(level1_factor, 1, alpha = 1)
)
self.to_object_level0 = ResidualBlock(hidden_channels, hidden_channels)
self.to_object_level1 = PatchUpscale(hidden_channels, img_channels)
self.to_object_level2 = nn.Sequential(
ResidualBlock(hidden_channels, hidden_channels),
ResidualBlock(hidden_channels, hidden_channels),
PatchUpscale(hidden_channels, level1_channels, alpha = 1),
PatchUpscale(level1_channels, img_channels, alpha = 1)
)
self.mask_alpha = nn.Parameter(th.zeros(1)+1e-16)
self.object_alpha = nn.Parameter(th.zeros(1)+1e-16)
def set_level(self, level):
self.level = level
def forward(self, position, gestalt, priority = None):
maps = self.layer0(self.merge(position, gestalt, priority))
mask0 = self.to_mask_level0(maps)
object0 = self.to_object_level0(maps)
mask = self.to_mask_level1(mask0)
object = self.to_object_level1(object0)
if self.level > 1:
mask = repeat(mask, 'b c h w -> b c (h h2) (w w2)', h2 = 4, w2 = 4)
object = repeat(object, 'b c h w -> b c (h h2) (w w2)', h2 = 4, w2 = 4)
mask = mask + self.to_mask_level2(mask0) * self.mask_alpha
object = object + self.to_object_level2(object0) * self.object_alpha
return self.to_shared(mask), self.to_shared(object)
|