aboutsummaryrefslogtreecommitdiff
path: root/model/nn/residual.py
blob: 1602e16e1bb70e7ea3ae6e9f022fe3441054ab6a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import torch.nn as nn
import torch as th
import numpy as np
from einops import rearrange, repeat, reduce
from model.utils.nn_utils import LambdaModule

from typing import Union, Tuple

__author__ = "Manuel Traub"

class DynamicLayerNorm(nn.Module):

    def __init__(self, eps: float = 1e-5):
        super(DynamicLayerNorm, self).__init__()
        self.eps = eps

    def forward(self, input: th.Tensor) -> th.Tensor:
        return nn.functional.layer_norm(input, input.shape[2:], None, None, self.eps)


class SkipConnection(nn.Module):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            scale_factor: float = 1.0
        ):
        super(SkipConnection, self).__init__()
        assert scale_factor == 1 or int(scale_factor) > 1 or int(1 / scale_factor) > 1, f'invalid scale factor in SpikeFunction: {scale_factor}'

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.scale_factor = scale_factor

    def channel_skip(self, input: th.Tensor):
        in_channels  = self.in_channels
        out_channels = self.out_channels
        
        if in_channels == out_channels:
            return input

        if in_channels % out_channels == 0 or out_channels % in_channels == 0:

            if in_channels > out_channels:
                return reduce(input, 'b (c n) h w -> b c h w', 'mean', n = in_channels // out_channels)

            if out_channels > in_channels:
                return repeat(input, 'b c h w -> b (c n) h w', n = out_channels // in_channels)

        mean_channels = np.gcd(in_channels, out_channels)
        input = reduce(input, 'b (c n) h w -> b c h w', 'mean', n = in_channels // mean_channels)
        return repeat(input, 'b c h w -> b (c n) h w', n = out_channels // mean_channels)

    def scale_skip(self, input: th.Tensor):
        scale_factor = self.scale_factor

        if scale_factor == 1:
            return input

        if scale_factor > 1:
            return repeat(
                input, 
                'b c h w -> b c (h h2) (w w2)', 
                h2 = int(scale_factor),
                w2 = int(scale_factor)
            )

        height = input.shape[2]
        width  = input.shape[3]

        # scale factor < 1
        scale_factor = int(1 / scale_factor)

        if width % scale_factor == 0 and height % scale_factor == 0:
            return reduce(
                input, 
                'b c (h h2) (w w2) -> b c h w', 
                'mean', 
                h2 = scale_factor,
                w2 = scale_factor
            )

        if width >= scale_factor and height >= scale_factor:
            return nn.functional.avg_pool2d(
                input, 
                kernel_size = scale_factor,
                stride = scale_factor
            )

        assert width > 1 or height > 1
        return reduce(input, 'b c h w -> b c 1 1', 'mean')


    def forward(self, input: th.Tensor):

        if self.scale_factor > 1:
            return self.scale_skip(self.channel_skip(input))

        return self.channel_skip(self.scale_skip(input))

class DownScale(nn.Module):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            scale_factor: int,
            groups: int = 1,
            bias: bool = True
        ):                                                                   

        super(DownScale, self).__init__()

        assert(in_channels % groups == 0)
        assert(out_channels % groups == 0)

        self.groups = groups
        self.scale_factor = scale_factor
        self.weight = nn.Parameter(th.empty((out_channels, in_channels // groups, scale_factor, scale_factor)))
        self.bias = nn.Parameter(th.empty((out_channels,))) if bias else None

        nn.init.kaiming_uniform_(self.weight, a=np.sqrt(5))

        if self.bias is not None:
            fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / np.sqrt(fan_in)
            nn.init.uniform_(self.bias, -bound, bound)

    def forward(self, input: th.Tensor):
        height = input.shape[2]
        width  = input.shape[3]
        assert height > 1 or width > 1, "trying to dowscale 1x1"
        
        scale_factor = self.scale_factor
        padding = [0, 0]

        if height < scale_factor:
            padding[0] = scale_factor - height

        if width < scale_factor:
            padding[1] = scale_factor - width
        
        return nn.functional.conv2d(
            input, 
            self.weight, 
            bias=self.bias,
            stride=scale_factor,
            padding=padding,
            groups=self.groups
        )


class ResidualBlock(nn.Module):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: Union[int, Tuple[int, int]] = (3, 3),
            scale_factor: int = 1,
            groups: Union[int, Tuple[int, int]] = (1, 1),
            bias: bool = True,
            layer_norm: bool = False,
            leaky_relu: bool = False,
            residual: bool = True,
            alpha_residual: bool = False,
            input_nonlinearity = True
        ):

        super(ResidualBlock, self).__init__()
        self.residual       = residual
        self.alpha_residual = alpha_residual
        self.skip           = False
        self.in_channels    = in_channels
        self.out_channels   = out_channels

        if isinstance(kernel_size, int):
            kernel_size = [kernel_size, kernel_size]

        if isinstance(groups, int):
            groups = [groups, groups]

        padding = (kernel_size[0] // 2, kernel_size[1] // 2)

        _layers = list()
        if layer_norm:
            _layers.append(DynamicLayerNorm())

        if input_nonlinearity:
            if leaky_relu:
                _layers.append(nn.LeakyReLU())
            else:
                _layers.append(nn.ReLU())

        if scale_factor > 1:
            _layers.append(
                nn.ConvTranspose2d(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    kernel_size=scale_factor,
                    stride=scale_factor,
                    groups=groups[0],
                    bias=bias
                )
            )
        elif scale_factor < 1:
            _layers.append(
                DownScale(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    scale_factor=int(1.0/scale_factor),
                    groups=groups[0],
                    bias=bias
                )
            )
        else:
            _layers.append(
                nn.Conv2d(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    kernel_size=kernel_size,
                    padding=padding,
                    groups=groups[0],
                    bias=bias
                )
            )

        if layer_norm:
            _layers.append(DynamicLayerNorm())
        if leaky_relu:
            _layers.append(nn.LeakyReLU())
        else:
            _layers.append(nn.ReLU())
        _layers.append(
            nn.Conv2d(
                in_channels=out_channels,
                out_channels=out_channels,
                kernel_size=kernel_size,
                padding=padding,
                groups=groups[1],
                bias=bias
            )
        )
        self.layers = nn.Sequential(*_layers)
        
        if self.residual:
            self.skip_connection = SkipConnection(
                in_channels=in_channels,
                out_channels=out_channels,
                scale_factor=scale_factor
            )

        if self.alpha_residual:
            self.alpha = nn.Parameter(th.zeros(1) + 1e-12)

    def set_mode(self, **kwargs):
        if 'skip' in kwargs:
            self.skip = kwargs['skip']

        if 'residual' in kwargs:
            self.residual = kwargs['residual']

    def forward(self, input: th.Tensor) -> th.Tensor:
        if self.skip:
            return self.skip_connection(input)

        if not self.residual:
            return self.layers(input)

        if self.alpha_residual:
            return self.alpha * self.layers(input) + self.skip_connection(input)

        return self.layers(input) + self.skip_connection(input)

class LinearSkip(nn.Module):
    def __init__(self, num_inputs: int, num_outputs: int):
        super(LinearSkip, self).__init__()

        self.num_inputs = num_inputs
        self.num_outputs = num_outputs

        if num_inputs % num_outputs != 0 and num_outputs % num_inputs != 0:
            mean_channels = np.gcd(num_inputs, num_outputs)
            print(f"[WW] gcd skip: {num_inputs} -> {mean_channels} -> {num_outputs}")
            assert(False)

    def forward(self, input: th.Tensor):
        num_inputs  = self.num_inputs
        num_outputs = self.num_outputs
        
        if num_inputs == num_outputs:
            return input

        if num_inputs % num_outputs == 0 or num_outputs % num_inputs == 0:

            if num_inputs > num_outputs:
                return reduce(input, 'b (c n) -> b c', 'mean', n = num_inputs // num_outputs)

            if num_outputs > num_inputs:
                return repeat(input, 'b c -> b (c n)', n = num_outputs // num_inputs)

        mean_channels = np.gcd(num_inputs, num_outputs)
        input = reduce(input, 'b (c n) -> b c', 'mean', n = num_inputs // mean_channels)
        return repeat(input, 'b c -> b (c n)', n = num_outputs // mean_channels)

class LinearResidual(nn.Module):
    def __init__(
        self, 
        num_inputs: int, 
        num_outputs: int, 
        num_hidden: int = None,
        residual: bool = True, 
        alpha_residual: bool = False,
        input_relu: bool = True
    ):
        super(LinearResidual, self).__init__()
        
        self.residual       = residual
        self.alpha_residual = alpha_residual

        if num_hidden is None:
            num_hidden = num_outputs

        _layers = []
        if input_relu:
            _layers.append(nn.ReLU())
        _layers.append(nn.Linear(num_inputs, num_hidden))
        _layers.append(nn.ReLU())
        _layers.append(nn.Linear(num_hidden, num_outputs))

        self.layers = nn.Sequential(*_layers)

        if residual:
            self.skip = LinearSkip(num_inputs, num_outputs)
        
        if alpha_residual:
            self.alpha = nn.Parameter(th.zeros(1)+1e-16)

    def forward(self, input: th.Tensor):
        if not self.residual:
            return self.layers(input)
        
        if not self.alpha_residual:
            return self.skip(input) + self.layers(input)

        return self.skip(input) + self.alpha * self.layers(input)


class EntityAttention(nn.Module):
    def __init__(self, channels, num_objects, size, channels_per_head = 12, dropout = 0.0):
        super(EntityAttention, self).__init__()

        assert channels % channels_per_head == 0
        heads = channels // channels_per_head

        self.alpha     = nn.Parameter(th.zeros(1)+1e-16)
        self.attention = nn.MultiheadAttention(
            channels, 
            heads, 
            dropout = dropout, 
            batch_first = True
        )

        self.channel_attention = nn.Sequential(
            LambdaModule(lambda x: rearrange(x, '(b o) c h w -> (b h w) o c', o = num_objects)),
            LambdaModule(lambda x: self.attention(x, x, x, need_weights=False)[0]),
            LambdaModule(lambda x: rearrange(x, '(b h w) o c-> (b o) c h w', h = size[0], w = size[1])),
        )


    def forward(self, input: th.Tensor) -> th.Tensor:
        return input + self.channel_attention(input) * self.alpha

class ImageAttention(nn.Module):
    def __init__(self, channels, gestalt_size, num_objects, size, channels_per_head = 12, dropout = 0.0):
        super(ImageAttention, self).__init__()

        assert gestalt_size % channels_per_head == 0
        heads = gestalt_size // channels_per_head

        self.alpha = nn.Parameter(th.zeros(1)+1e-16)
        self.attention = nn.MultiheadAttention(
            gestalt_size, 
            heads, 
            dropout = dropout, 
            batch_first = True
        )

        self.image_attention = nn.Sequential(
            nn.Conv2d(channels, gestalt_size, kernel_size=1),
            LambdaModule(lambda x: rearrange(x, 'b c h w -> b (h w) c')),
            LambdaModule(lambda x: self.attention(x, x, x, need_weights=False)[0]),
            LambdaModule(lambda x: rearrange(x, 'b (h w) c -> b c h w', h = size[0], w = size[1])),
            nn.Conv2d(gestalt_size, channels, kernel_size=1),
        )

    def forward(self, input: th.Tensor) -> th.Tensor:
        return input + self.image_attention(input) * self.alpha