1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
import torch.nn as nn
import torch as th
import torchvision.transforms as transforms
import torch.nn.functional as F
from einops import rearrange, repeat, reduce
from typing import Tuple, Union, List
from model.utils.nn_utils import Gaus2D, LambdaModule, TanhAlpha
class InitialLatentStates(nn.Module):
def __init__(
self,
gestalt_size: int,
num_objects: int,
bottleneck: str,
size: Tuple[int, int],
teacher_forcing: int
):
super(InitialLatentStates, self).__init__()
self.bottleneck = bottleneck
self.num_objects = num_objects
self.gestalt_mean = nn.Parameter(th.zeros(1, gestalt_size))
self.gestalt_std = nn.Parameter(th.ones(1, gestalt_size))
self.std = nn.Parameter(th.zeros(1))
self.gestalt_strength = 2
self.teacher_forcing = teacher_forcing
self.init = TanhAlpha(start = -1)
self.register_buffer('priority', th.arange(num_objects).float() * 25, persistent=False)
self.register_buffer('threshold', th.ones(1) * 0.8)
self.last_mask = None
self.binarize_first = round(gestalt_size * 0.8)
self.gaus2d = nn.Sequential(
Gaus2D((size[0] // 16, size[1] // 16)),
Gaus2D((size[0] // 4, size[1] // 4)),
Gaus2D(size)
)
self.level = 1
self.t = 0
self.to_batch = LambdaModule(lambda x: rearrange(x, 'b (o c) -> (b o) c', o = num_objects))
self.to_shared = LambdaModule(lambda x: rearrange(x, '(b o) c -> b (o c)', o = num_objects))
self.blur = transforms.GaussianBlur(13)
self.size = size
def reset_state(self):
self.last_mask = None
self.t = 0
self.to_next_spawn = 0
def set_level(self, level):
self.level = level
factor = int(4 / (level ** 2))
self.to_position = ErrorToPosition((self.size[0] // factor, self.size[1] // factor))
def forward(
self,
error: th.Tensor,
mask: th.Tensor = None,
position: th.Tensor = None,
gestalt: th.Tensor = None,
priority: th.Tensor = None,
shuffleslots: bool = True,
slots_bounded_last: th.Tensor = None,
slots_occlusionfactor_last: th.Tensor = None,
allow_spawn: bool = True,
clean_slots: bool = False
):
batch_size = error.shape[0]
device = error.device
if self.init.get() < 1:
self.gestalt_strength = self.init()
if self.last_mask is None:
self.last_mask = th.zeros((batch_size * self.num_objects, 1), device = device)
if shuffleslots:
self.slots_assigned = th.ones((batch_size * self.num_objects, 1), device = device)
else:
self.slots_assigned = th.zeros((batch_size * self.num_objects, 1), device = device)
if not allow_spawn:
unnassigned = self.slots_assigned - slots_bounded_last
self.slots_assigned = self.slots_assigned - unnassigned
if clean_slots and (slots_occlusionfactor_last is not None):
occluded = self.slots_assigned * (self.to_batch(slots_occlusionfactor_last) > 0.1).float()
self.slots_assigned = self.slots_assigned - occluded
if (slots_bounded_last is None) or (self.gestalt_strength < 1):
if mask is not None:
# maximum berechnung --> slot gebunden c=o
mask2 = reduce(mask[:,:-1], 'b c h w -> (b c) 1' , 'max').detach()
if self.gestalt_strength <= 0:
self.last_mask = mask2
elif self.gestalt_strength < 1:
self.last_mask = th.maximum(self.last_mask, mask2)
self.last_mask = self.last_mask - th.relu(-1 * (mask2 - self.threshold) * (1 - self.gestalt_strength))
else:
self.last_mask = th.maximum(self.last_mask, mask2)
slots_bounded = (self.last_mask > self.threshold).float().detach() * self.slots_assigned
else:
slots_bounded = slots_bounded_last * self.slots_assigned
if self.bottleneck == "binar":
gestalt_new = repeat(th.sigmoid(self.gestalt_mean), '1 c -> b c', b = batch_size * self.num_objects)
gestalt_new = gestalt_new + gestalt_new * (1 - gestalt_new) * th.randn_like(gestalt_new)
else:
gestalt_mean = repeat(self.gestalt_mean, '1 c -> b c', b = batch_size * self.num_objects)
gestalt_std = repeat(self.gestalt_std, '1 c -> b c', b = batch_size * self.num_objects)
gestalt_new = th.sigmoid(gestalt_mean + gestalt_std * th.randn_like(gestalt_std))
if gestalt is None:
gestalt = gestalt_new
else:
gestalt = self.to_batch(gestalt) * slots_bounded + gestalt_new * (1 - slots_bounded)
if priority is None:
priority = repeat(self.priority, 'o -> (b o) 1', b = batch_size)
else:
priority = self.to_batch(priority) * slots_bounded + repeat(self.priority, 'o -> (b o) 1', b = batch_size) * (1 - slots_bounded)
if shuffleslots:
self.slots_assigned = th.ones_like(self.slots_assigned)
xy_rand_new = th.rand((batch_size * self.num_objects * 10, 2), device = device) * 2 - 1
std_new = th.zeros((batch_size * self.num_objects * 10, 1), device = device)
position_new = th.cat((xy_rand_new, std_new), dim=1)
position2d = self.gaus2d[self.level](position_new)
position2d = rearrange(position2d, '(b o) 1 h w -> b o h w', b = batch_size)
rand_error = reduce(position2d * error, 'b o h w -> (b o) 1', 'sum')
xy_rand_new = rearrange(xy_rand_new, '(b r) c -> r b c', r = 10)
rand_error = rearrange(rand_error, '(b r) c -> r b c', r = 10)
max_error = th.argmax(rand_error, dim=0, keepdim=True)
x, y = th.chunk(xy_rand_new, 2, dim=2)
x = th.gather(x, dim=0, index=max_error).detach().squeeze(dim=0)
y = th.gather(y, dim=0, index=max_error).detach().squeeze(dim=0)
std = repeat(self.std, '1 -> (b o) 1', b = batch_size, o=self.num_objects)
if position is None:
position = th.cat((x, y, std), dim=1)
else:
position = self.to_batch(position) * slots_bounded + th.cat((x, y, std), dim=1) * (1 - slots_bounded)
else:
# set unassigned slots to empty position
empty_position = th.tensor([-1,-1,0]).to(device)
empty_position = repeat(empty_position, 'c -> (b o) c', b = batch_size, o=self.num_objects).detach()
if position is None:
position = empty_position
else:
position = self.to_batch(position) * self.slots_assigned + empty_position * (1 - self.slots_assigned)
# blur errror, and set masked areas to zero
error = self.blur(error)
if mask is not None:
mask2 = mask[:,:-1] * rearrange(slots_bounded, '(b o) 1 -> b o 1 1', b = batch_size)
mask2 = th.sum(mask2, dim=1, keepdim=True)
error = error * (1-mask2)
max_error = reduce(error, 'b o h w -> (b o) 1', 'max')
if self.to_next_spawn <= 0 and allow_spawn:
self.to_next_spawn = 2
# calculate the position with the highest error
new_pos = self.to_position(error)
std = repeat(self.std, '1 -> b 1', b = batch_size)
new_pos = repeat(th.cat((new_pos, std), dim=1), 'b c -> (b o) c', o = self.num_objects)
# calculate if an assigned slot is unbound (-->free)
n_slots_assigned = self.to_shared(self.slots_assigned).sum(dim=1, keepdim=True)
n_slots_bounded = self.to_shared(slots_bounded).sum(dim=1, keepdim=True)
free_slot_given = th.clip(n_slots_assigned - n_slots_bounded, 0, 1)
# either spawn a new slot or use the one that is free
slots_new_index = n_slots_assigned * (1-free_slot_given) + n_slots_bounded * free_slot_given # reset the free slot each timespawn
# new slot index
free_slot_required = (max_error > 0).float()
slots_new_index = F.one_hot(slots_new_index.long(), num_classes=self.num_objects+1).float().squeeze(dim=1)[:,:-1]
slots_new_index = self.to_batch(slots_new_index * free_slot_required)
# place new free slot
position = new_pos * slots_new_index + position * (1 - slots_new_index)
self.slots_assigned = th.clip(self.slots_assigned + slots_new_index, 0, 1)
self.to_next_spawn -= 1
return self.to_shared(position), self.to_shared(gestalt), self.to_shared(priority), error
def get_slots_unassigned(self):
return self.to_shared(1-self.slots_assigned)
def get_slots_assigned(self):
return self.to_shared(self.slots_assigned)
class OcclusionTracker(nn.Module):
def __init__(self, batch_size, num_objects, device):
super(OcclusionTracker, self).__init__()
self.batch_size = batch_size
self.num_objects = num_objects
self.slots_bounded_all = th.zeros((batch_size * num_objects, 1)).to(device)
self.threshold = 0.8
self.device = device
self.to_shared = LambdaModule(lambda x: rearrange(x, '(b o) c -> b (o c)', o = num_objects))
self.slots_bounded_next_last = None
def forward(
self,
mask: th.Tensor = None,
rawmask: th.Tensor = None,
reset_mask: bool = False,
update: bool = True
):
if mask is not None:
# compute bounding mask
slots_bounded_smooth_cur = reduce(mask[:,:-1], 'b o h w -> (b o) 1' , 'max').detach()
slots_bounded_cur = (slots_bounded_smooth_cur > self.threshold).float().detach()
if reset_mask:
self.slots_bounded_next_last = slots_bounded_cur # allow immediate spawn
if update:
slots_bounded_cur = slots_bounded_cur * th.clip(self.slots_bounded_next_last + self.slots_bounded_all, 0, 1)
else:
self.slots_bounded_next_last = slots_bounded_cur
if reset_mask:
self.slots_bounded_smooth_all = slots_bounded_smooth_cur
self.slots_bounded_all = slots_bounded_cur
elif update:
self.slots_bounded_all = th.maximum(self.slots_bounded_all, slots_bounded_cur)
self.slots_bounded_smooth_all = th.maximum(self.slots_bounded_smooth_all, slots_bounded_smooth_cur)
# compute occlusion mask
slots_occluded_cur = self.slots_bounded_all - slots_bounded_cur
# compute partially occluded mask
mask = (mask[:,:-1] > self.threshold).float().detach()
rawmask = (rawmask[:,:-1] > self.threshold).float().detach()
masked = rawmask - mask
masked = reduce(masked, 'b o h w -> (b o) 1' , 'sum')
rawmask = reduce(rawmask, 'b o h w -> (b o) 1' , 'sum')
slots_occlusionfactor_cur = (masked / (rawmask + 1)) * (1-slots_occluded_cur) + slots_occluded_cur
slots_partially_occluded = (slots_occlusionfactor_cur > 0.1).float() #* slots_bounded_cur
slots_fully_visible = (slots_occlusionfactor_cur <= 0.1).float() * slots_bounded_cur
if reset_mask:
self.slots_fully_visible_all = slots_fully_visible
elif update:
self.slots_fully_visible_all = th.maximum(self.slots_fully_visible_all, slots_fully_visible)
return self.to_shared(self.slots_bounded_all), self.to_shared(self.slots_bounded_smooth_all), self.to_shared(slots_occluded_cur), self.to_shared(slots_partially_occluded), self.to_shared(slots_fully_visible), self.to_shared(slots_occlusionfactor_cur)
def get_slots_fully_visible_all(self):
return self.to_shared(self.slots_fully_visible_all)
class ErrorToPosition(nn.Module):
def __init__(self, size: Union[int, Tuple[int, int]]):
super(ErrorToPosition, self).__init__()
self.register_buffer("grid_x", th.arange(size[0]), persistent=False)
self.register_buffer("grid_y", th.arange(size[1]), persistent=False)
self.grid_x = (self.grid_x / (size[0]-1)) * 2 - 1
self.grid_y = (self.grid_y / (size[1]-1)) * 2 - 1
self.grid_x = self.grid_x.view(1, 1, -1, 1).expand(1, 1, *size).clone()
self.grid_y = self.grid_y.view(1, 1, 1, -1).expand(1, 1, *size).clone()
self.grid_x = self.grid_x.view(1, 1, -1)
self.grid_y = self.grid_y.view(1, 1, -1)
self.size = size
def forward(self, input: th.Tensor):
assert input.shape[1] == 1
input = rearrange(input, 'b c h w -> b c (h w)')
argmax = th.argmax(input, dim=2, keepdim=True)
x = self.grid_x[0,0,argmax].squeeze(dim=2)
y = self.grid_y[0,0,argmax].squeeze(dim=2)
return th.cat((x,y),dim=1)
def compute_rawmask(mask, bg_mask):
num_objects = mask.shape[1]
# d is a diagonal matrix which defines what to take the softmax over
d_mask = th.diag(th.ones(num_objects+1)).to(mask.device)
d_mask[:,-1] = 1
d_mask[-1,-1] = 0
# take subset of rawmask with the diagonal matrix
rawmask = th.cat((mask, bg_mask), dim=1)
rawmask = repeat(rawmask, 'b o h w -> b r o h w', r = num_objects+1)
rawmask = rawmask[:,d_mask.bool()]
rawmask = rearrange(rawmask, 'b (o r) h w -> b o r h w', o = num_objects)
# take softmax between each object mask and the background mask
rawmask = th.squeeze(th.softmax(rawmask, dim=2)[:,:,0], dim=2)
rawmask = th.cat((rawmask, bg_mask), dim=1) # add background mask
return rawmask
|