aboutsummaryrefslogtreecommitdiff
path: root/scripts/exec/train.py
blob: f6e78fd6314ff05563f01f6384224b4bfb1f5f0e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import argparse
import sys
from scripts.utils.configuration import Configuration
from scripts import training
from data.datasets.CLEVRER.dataset import ClevrerDataset, ClevrerSample, RamImage
from data.datasets.ADEPT.dataset import AdeptDataset

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("-cfg", default="", help='path to the configuration file')
    parser.add_argument("-n", default=-1, type=int, help='optional run number')
    parser.add_argument("-load", default="", type=str, help='path to pretrained model or checkpoint')

    # Load configuration
    args = parser.parse_args(sys.argv[1:])
    cfg = Configuration(args.cfg)
    cfg.model_path = f"{cfg.model_path}"
    if args.n >= 0:
        cfg.model_path = f"{cfg.model_path}.run{args.n}"
    print(f'Training model {cfg.model_path}')

    # Load dataset
    if cfg.datatype == "clevrer":
        trainset = ClevrerDataset("./", cfg.dataset, "train", (cfg.model.latent_size[1] * 2**(cfg.model.level*2), cfg.model.latent_size[0] * 2**(cfg.model.level*2)), use_slotformer=False)
        valset   = ClevrerDataset("./", cfg.dataset, "val", (cfg.model.latent_size[1] * 2**(cfg.model.level*2), cfg.model.latent_size[0] * 2**(cfg.model.level*2)), use_slotformer=True)
    elif cfg.datatype == "adept":
        trainset = AdeptDataset("./", cfg.dataset, "train", (cfg.model.latent_size[1] * 2**(cfg.model.level*2), cfg.model.latent_size[0] * 2**(cfg.model.level*2)))
        valset   = AdeptDataset("./", cfg.dataset, "test",  (cfg.model.latent_size[1] * 2**(cfg.model.level*2), cfg.model.latent_size[0] * 2**(cfg.model.level*2)))
    else:
        raise Exception("Dataset not supported")
    
    # Final call
    training.train_loci(cfg, trainset, valset, args.load)