1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
import os
from scripts.utils.configuration import Configuration
import time
import torch as th
import numpy as np
from einops import rearrange, repeat, reduce
def init_device(cfg):
print(f'Cuda available: {th.cuda.is_available()} Cuda count: {th.cuda.device_count()}')
if th.cuda.is_available():
device = th.device("cuda:0")
verbose = False
cfg.device = "cuda:0"
cfg.model.device = "cuda:0"
print('!!! USING GPU !!!')
else:
device = th.device("cpu")
verbose = True
cfg.device = "cpu"
cfg.model.device = "cpu"
cfg.model.batch_size = 2
cfg.defaults.teacher_forcing = 4
print('!!! USING CPU !!!')
return device,verbose
class Timer:
def __init__(self):
self.last = time.time()
self.passed = 0
self.sum = 0
def __str__(self):
self.passed = self.passed * 0.99 + time.time() - self.last
self.sum = self.sum * 0.99 + 1
passed = self.passed / self.sum
self.last = time.time()
if passed > 1:
return f"{passed:.2f}s/it"
return f"{1.0/passed:.2f}it/s"
class UEMA:
def __init__(self, memory = 100):
self.value = 0
self.sum = 1e-30
self.decay = np.exp(-1 / memory)
def update(self, value):
self.value = self.value * self.decay + value
self.sum = self.sum * self.decay + 1
def __float__(self):
return self.value / self.sum
def model_path(cfg: Configuration, overwrite=False, move_old=True):
"""
Makes the model path, option to not overwrite
:param cfg: Configuration file with the model path
:param overwrite: Overwrites the files in the directory, else makes a new directory
:param move_old: Moves old folder with the same name to an old folder, if not overwrite
:return: Model path
"""
_path = os.path.join('out', cfg.dataset)
path = os.path.join(_path, cfg.model_path)
if not os.path.exists(_path):
os.makedirs(_path)
if not overwrite:
if move_old:
# Moves existing directory to an old folder
if os.path.exists(path):
old_path = os.path.join(_path, f'{cfg.model_path}_old')
if not os.path.exists(old_path):
os.makedirs(old_path)
_old_path = os.path.join(old_path, cfg.model_path)
i = 0
while os.path.exists(_old_path):
i = i + 1
_old_path = os.path.join(old_path, f'{cfg.model_path}_{i}')
os.renames(path, _old_path)
else:
# Increases number after directory name for each new path
i = 0
while os.path.exists(path):
i = i + 1
path = os.path.join(_path, f'{cfg.model_path}_{i}')
return path
class LossLogger:
def __init__(self, writer):
self.avgloss = UEMA()
self.avg_position_loss = UEMA()
self.avg_time_loss = UEMA()
self.avg_latent_loss = UEMA()
self.avg_encoding_loss = UEMA()
self.avg_prediction_loss = UEMA()
self.avg_prediction_loss_long = UEMA(33333)
self.avg_num_objects = UEMA()
self.avg_openings = UEMA()
self.avg_gestalt = UEMA()
self.avg_gestalt2 = UEMA()
self.avg_gestalt_mean = UEMA()
self.avg_update_gestalt = UEMA()
self.avg_update_position = UEMA()
self.avg_num_bounded = UEMA()
self.writer = writer
def update_complete(self, avg_position_loss, avg_time_loss, avg_latent_loss, avg_encoding_loss, avg_prediction_loss, avg_num_objects, avg_openings, avg_gestalt, avg_gestalt2, avg_gestalt_mean, avg_update_gestalt, avg_update_position, avg_num_bounded, lr, num_updates):
self.avg_position_loss.update(avg_position_loss.item())
self.avg_time_loss.update(avg_time_loss.item())
self.avg_latent_loss.update(avg_latent_loss.item())
self.avg_encoding_loss.update(avg_encoding_loss.item())
self.avg_prediction_loss.update(avg_prediction_loss.item())
self.avg_prediction_loss_long.update(avg_prediction_loss.item())
self.avg_num_objects.update(avg_num_objects)
self.avg_openings.update(avg_openings)
self.avg_gestalt.update(avg_gestalt.item())
self.avg_gestalt2.update(avg_gestalt2.item())
self.avg_gestalt_mean.update(avg_gestalt_mean.item())
self.avg_update_gestalt.update(avg_update_gestalt)
self.avg_update_position.update(avg_update_position)
self.avg_num_bounded.update(avg_num_bounded)
self.writer.add_scalar("Train/Position Loss", avg_position_loss.item(), num_updates)
self.writer.add_scalar("Train/Time Loss", avg_time_loss.item(), num_updates)
self.writer.add_scalar("Train/Latent Loss", avg_latent_loss.item(), num_updates)
self.writer.add_scalar("Train/Encoder Loss", avg_encoding_loss.item(), num_updates)
self.writer.add_scalar("Train/Prediction Loss", avg_prediction_loss.item(), num_updates)
self.writer.add_scalar("Train/Number of Objects", avg_num_objects, num_updates)
self.writer.add_scalar("Train/Openings", avg_openings, num_updates)
self.writer.add_scalar("Train/Gestalt", avg_gestalt.item(), num_updates)
self.writer.add_scalar("Train/Gestalt2", avg_gestalt2.item(), num_updates)
self.writer.add_scalar("Train/Gestalt Mean", avg_gestalt_mean.item(), num_updates)
self.writer.add_scalar("Train/Update Gestalt", avg_update_gestalt, num_updates)
self.writer.add_scalar("Train/Update Position", avg_update_position, num_updates)
self.writer.add_scalar("Train/Number Bounded", avg_num_bounded, num_updates)
self.writer.add_scalar("Train/Learning Rate", lr, num_updates)
pass
def update_average_loss(self, avgloss, num_updates):
self.avgloss.update(avgloss)
self.writer.add_scalar("Train/Loss", avgloss, num_updates)
pass
def get_log(self):
info = f'Loss: {np.abs(float(self.avgloss)):.2e}|{float(self.avg_prediction_loss):.2e}|{float(self.avg_prediction_loss_long):.2e}, reg: {float(self.avg_encoding_loss):.2e}|{float(self.avg_time_loss):.2e}|{float(self.avg_latent_loss):.2e}|{float(self.avg_position_loss):.2e}, obj: {float(self.avg_num_objects):.1f}, open: {float(self.avg_openings):.2e}|{float(self.avg_gestalt):.2f}, bin: {float(self.avg_gestalt_mean):.2e}|{np.sqrt(float(self.avg_gestalt2) - float(self.avg_gestalt)**2):.2e} closed: {float(self.avg_update_gestalt):.2e}|{float(self.avg_update_position):.2e}'
return info
class WriterWrapper():
def __init__(self, use_wandb: bool, cfg: Configuration):
if use_wandb:
from torch.utils.tensorboard import SummaryWriter
import wandb
wandb.init(project=f'Loci_Looped_{cfg.dataset}', name= cfg.model_path, sync_tensorboard=True, config=cfg)
self.writer = SummaryWriter()
else:
self.writer = None
def add_scalar(self, name, value, step):
if self.writer is not None:
self.writer.add_scalar(name, value, step)
def add_video(self, name, value, step):
if self.writer is not None:
self.writer.add_video(name, value, step)
def flush(self):
if self.writer is not None:
self.writer.flush()
|