1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
|
import torch as th
from torch import nn
import numpy as np
import cv2
from einops import rearrange, repeat
import matplotlib.pyplot as plt
import PIL
from model.utils.nn_utils import Gaus2D, Vector2D
def preprocess(tensor, scale=1, normalize=False, mean_std_normalize=False):
if tensor is None:
return None
if normalize:
min_ = th.min(tensor)
max_ = th.max(tensor)
tensor = (tensor - min_) / (max_ - min_)
if mean_std_normalize:
mean = th.mean(tensor)
std = th.std(tensor)
tensor = th.clip((tensor - mean) / (2 * std), -1, 1) * 0.5 + 0.5
if scale > 1:
upsample = nn.Upsample(scale_factor=scale).to(tensor[0].device)
tensor = upsample(tensor)
return tensor
def preprocess_multi(*args, scale):
return [preprocess(a, scale) for a in args]
def color_mask(mask):
colors = th.tensor([
[ 255, 0, 0 ],
[ 0, 0, 255 ],
[ 255, 255, 0 ],
[ 255, 0, 255 ],
[ 0, 255, 255 ],
[ 0, 255, 0 ],
[ 255, 128, 0 ],
[ 128, 255, 0 ],
[ 128, 0, 255 ],
[ 255, 0, 128 ],
[ 0, 255, 128 ],
[ 0, 128, 255 ],
[ 255, 128, 128 ],
[ 128, 255, 128 ],
[ 128, 128, 255 ],
[ 255, 128, 128 ],
[ 128, 255, 128 ],
[ 128, 128, 255 ],
[ 255, 128, 255 ],
[ 128, 255, 255 ],
[ 128, 255, 255 ],
[ 255, 255, 128 ],
[ 255, 255, 128 ],
[ 255, 128, 255 ],
[ 128, 0, 0 ],
[ 0, 0, 128 ],
[ 128, 128, 0 ],
[ 128, 0, 128 ],
[ 0, 128, 128 ],
[ 0, 128, 0 ],
[ 128, 128, 0 ],
[ 128, 128, 0 ],
[ 128, 0, 128 ],
[ 128, 0, 128 ],
[ 0, 128, 128 ],
[ 0, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
], device = mask.device) / 255.0
colors = colors.view(1, -1, 3, 1, 1)
mask = mask.unsqueeze(dim=2)
return th.sum(colors[:,:mask.shape[1]] * mask, dim=1)
def get_color(o):
colors = th.tensor([
[ 255, 0, 0 ],
[ 0, 0, 255 ],
[ 255, 255, 0 ],
[ 255, 0, 255 ],
[ 0, 255, 255 ],
[ 0, 255, 0 ],
[ 255, 128, 0 ],
[ 128, 255, 0 ],
[ 128, 0, 255 ],
[ 255, 0, 128 ],
[ 0, 255, 128 ],
[ 0, 128, 255 ],
[ 255, 128, 128 ],
[ 128, 255, 128 ],
[ 128, 128, 255 ],
[ 255, 128, 128 ],
[ 128, 255, 128 ],
[ 128, 128, 255 ],
[ 255, 128, 255 ],
[ 128, 255, 255 ],
[ 128, 255, 255 ],
[ 255, 255, 128 ],
[ 255, 255, 128 ],
[ 255, 128, 255 ],
[ 128, 0, 0 ],
[ 0, 0, 128 ],
[ 128, 128, 0 ],
[ 128, 0, 128 ],
[ 0, 128, 128 ],
[ 0, 128, 0 ],
[ 128, 128, 0 ],
[ 128, 128, 0 ],
[ 128, 0, 128 ],
[ 128, 0, 128 ],
[ 0, 128, 128 ],
[ 0, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
[ 128, 128, 128 ],
]) / 255.0
colors = colors.view(48,3)
return colors[o]
def to_rgb(tensor: th.Tensor):
return th.cat((
tensor * 0.6 + 0.4,
tensor,
tensor
), dim=1)
def visualise_gate(gate, h, w):
bar = th.ones((1,h,w), device=gate.device) * 0.9
black = int(w*gate.item())
if black > 0:
bar[:,:, -black:] = 0
return bar
def get_highlighted_input(input, mask_cur):
# highlight error
highlighted_input = input
if mask_cur is not None:
grayscale = input[:,0:1] * 0.299 + input[:,1:2] * 0.587 + input[:,2:3] * 0.114
object_mask_cur = th.sum(mask_cur[:,:-1], dim=1).unsqueeze(dim=1)
highlighted_input = grayscale * (1 - object_mask_cur)
highlighted_input += grayscale * object_mask_cur * 0.3333333
cmask = color_mask(mask_cur[:,:-1])
highlighted_input = highlighted_input + cmask * 0.6666666
return highlighted_input
def color_slots(image, slots_bounded, slots_partially_occluded_cur, slots_occluded_cur):
image = (1-image) * slots_bounded + image * (1-slots_bounded)
image = th.clip(image - 0.3, 0,1) * slots_partially_occluded_cur + image * (1-slots_partially_occluded_cur)
image = th.clip(image - 0.3, 0,1) * slots_occluded_cur + image * (1-slots_occluded_cur)
return image
def compute_occlusion_mask(rawmask_cur, rawmask_next, mask_cur, mask_next, scale):
# compute occlusion mask
occluded_cur = th.clip(rawmask_cur - mask_cur, 0, 1)[:,:-1]
occluded_next = th.clip(rawmask_next - mask_next, 0, 1)[:,:-1]
# to rgb
rawmask_cur = repeat(rawmask_cur[:,:-1], 'b o h w -> b (o 3) h w')
rawmask_next = repeat(rawmask_next[:,:-1], 'b o h w -> b (o 3) h w')
# scale
occluded_next = preprocess(occluded_next, scale)
occluded_cur = preprocess(occluded_cur, scale)
rawmask_cur = preprocess(rawmask_cur, scale)
rawmask_next = preprocess(rawmask_next, scale)
# set occlusion to red
rawmask_cur = rearrange(rawmask_cur, 'b (o c) h w -> b o c h w', c = 3)
rawmask_cur[:,:,0] = rawmask_cur[:,:,0] * (1 - occluded_next)
rawmask_cur[:,:,1] = rawmask_cur[:,:,1] * (1 - occluded_next)
rawmask_next = rearrange(rawmask_next, 'b (o c) h w -> b o c h w', c = 3)
rawmask_next[:,:,0] = rawmask_next[:,:,0] * (1 - occluded_next)
rawmask_next[:,:,1] = rawmask_next[:,:,1] * (1 - occluded_next)
return rawmask_cur, rawmask_next
def plot_online_error_slots(errors, error_name, target, sequence_len, root_path, visibilty_memory, slots_bounded, ylim=0.3):
error_plots = []
if len(errors) > 0:
num_slots = int(th.sum(slots_bounded).item())
errors = rearrange(np.array(errors), '(l o) -> o l', o=len(slots_bounded))[:num_slots]
visibilty_memory = rearrange(np.array(visibilty_memory), '(l o) -> o l', o=len(slots_bounded))[:num_slots]
for error,visibility in zip(errors, visibilty_memory):
if len(error) < sequence_len:
fig, ax = plt.subplots(figsize=(round(target.shape[3]/100,2), round(target.shape[2]/100,2)))
plt.plot(error, label=error_name)
visibility = np.concatenate((visibility, np.ones(sequence_len-len(error))))
ax.fill_between(range(sequence_len), 0, 1, where=visibility==0, color='orange', alpha=0.3, transform=ax.get_xaxis_transform())
plt.xlim((0,sequence_len))
plt.ylim((0,ylim))
fig.tight_layout()
plt.savefig(f'{root_path}/tmp.jpg')
error_plot = PIL.Image.frombytes('RGB', fig.canvas.get_width_height(),fig.canvas.tostring_rgb())
error_plot = th.from_numpy(np.array(error_plot).transpose(2,0,1))
plt.close(fig)
error_plots.append(error_plot)
return error_plots
def plot_online_error(error, error_name, target, t, i, sequence_len, root_path, online_surprise = False):
fig = plt.figure(figsize=( round(target.shape[3]/50,2), round(target.shape[2]/50,2) ))
plt.plot(error, label=error_name)
if online_surprise:
# compute moving average of error
moving_average_length = 10
if t > moving_average_length:
moving_average_length += 1
average_error = np.mean(error[-moving_average_length:-1])
current_sd = np.std(error[-moving_average_length:-1])
current_error = error[-1]
if current_error > average_error + 2 * current_sd:
fig.set_facecolor('orange')
plt.xlim((0,sequence_len))
plt.legend()
# increase title size
plt.title(f'{error_name}', fontsize=20)
plt.xlabel('timestep')
plt.ylabel('error')
plt.savefig(f'{root_path}/tmp.jpg')
error_plot = PIL.Image.frombytes('RGB', fig.canvas.get_width_height(),fig.canvas.tostring_rgb())
error_plot = th.from_numpy(np.array(error_plot).transpose(2,0,1))
plt.close(fig)
return error_plot
def plot_object_view(error_plot, error_plot2, error_plot_slots, error_plot_slots2, highlighted_input, output_hidden, object_next, rawmask_next, velocity_next2d, target, slots_closed, gt_positions_target_next, association_table, size, num_objects, largest_object):
# add ground truth positions of objects to image
if gt_positions_target_next is not None:
for o in range(gt_positions_target_next.shape[1]):
position = gt_positions_target_next[0, o]
position = position/2 + 0.5
if position[2] > 0.0 and position[0] > 0.0 and position[0] < 1.0 and position[1] > 0.0 and position[1] < 1.0:
width = 5
w = np.clip(int(position[0]*target.shape[2]), width, target.shape[2]-width).item()
h = np.clip(int(position[1]*target.shape[3]), width, target.shape[3]-width).item()
col = get_color(o).view(3,1,1)
target[0,:,(w-width):(w+width), (h-width):(h+width)] = col
# add these positions to the associated slots velocity_next2d ilustration
slots = (association_table[0] == o).nonzero()
for s in slots.flatten():
velocity_next2d[s,:,(w-width):(w+width), (h-width):(h+width)] = col
if output_hidden is not None and s != largest_object:
output_hidden[0,:,(w-width):(w+width), (h-width):(h+width)] = col
gateheight = 60
ch = 40
gh = 40
gh_bar = gh-20
gh_margin = int((gh-gh_bar)/2)
margin = 20
slots_margin = 10
height = size[0] * 6 + 18*5
width = size[1] * 4 + 18*2 + size[1]*num_objects + 6*(num_objects+1) + slots_margin*(num_objects+1)
img = th.ones((3, height, width), device = object_next.device) * 0.4
row = (lambda row_index: [2*size[0]*row_index + (row_index+1)*margin, 2*size[0]*(row_index+1) + (row_index+1)*margin])
col1 = range(margin, margin + size[1]*2)
col2 = range(width-(margin+size[1]*2), width-margin)
img[:,row(0)[0]:row(0)[1], col1] = preprocess(highlighted_input.to(object_next.device), 2)[0]
img[:,row(1)[0]:row(1)[1], col1] = preprocess(output_hidden.to(object_next.device), 2)[0]
img[:,row(2)[0]:row(2)[1], col1] = preprocess(target.to(object_next.device), 2)[0]
if error_plot is not None:
img[:,row(0)[0]+gh+ch+2*margin-gh_margin:row(0)[1]+gh+ch+2*margin-gh_margin, col2] = preprocess(error_plot.to(object_next.device), normalize= True)
if error_plot2 is not None:
img[:,row(2)[0]:row(2)[1], col2] = preprocess(error_plot2.to(object_next.device), normalize= True)
for o in range(num_objects):
col = 18+size[1]*2+6+o*(6+size[1])+(o+1)*slots_margin
col = range(col, col + size[1])
# color bar for the gate
if (error_plot_slots2 is not None) and len(error_plot_slots2) > o:
img[:,margin:margin+ch, col] = get_color(o).view(3,1,1).to(object_next.device)
img[:,margin+ch+2*margin:2*margin+gh_bar+ch+margin, col] = visualise_gate(slots_closed[:,o, 0].to(object_next.device), h=gh_bar, w=len(col))
offset = gh+margin-gh_margin+ch+2*margin
row = (lambda row_index: [offset+(size[0]+6)*row_index, offset+size[0]*(row_index+1)+6*row_index])
img[:,row(0)[0]:row(0)[1], col] = preprocess(rawmask_next[0,o].to(object_next.device))
img[:,row(1)[0]:row(1)[1], col] = preprocess(object_next[:,o].to(object_next.device))
if (error_plot_slots2 is not None) and len(error_plot_slots2) > o:
img[:,row(2)[0]:row(2)[1], col] = preprocess(error_plot_slots2[o].to(object_next.device), normalize=True)
offset = margin*2-8
row = (lambda row_index: [offset+(size[0]+6)*row_index, offset+size[0]*(row_index+1)+6*row_index])
img[:,row(4)[0]-gh+gh_margin:row(4)[0]-gh_margin, col] = visualise_gate(slots_closed[:,o, 1].to(object_next.device), h=gh_bar, w=len(col))
img[:,row(4)[0]:row(4)[1], col] = preprocess(velocity_next2d[o].to(object_next.device), normalize=True)[0]
if (error_plot_slots is not None) and len(error_plot_slots) > o:
img[:,row(5)[0]:row(5)[1], col] = preprocess(error_plot_slots[o].to(object_next.device), normalize=True)
img = rearrange(img * 255, 'c h w -> h w c').cpu().numpy()
return img
def write_image(file, img):
img = rearrange(img * 255, 'c h w -> h w c').cpu().numpy()
cv2.imwrite(file, img)
pass
def plot_timestep(cfg, cfg_net, input, target, mask_cur, mask_next, output_next, position_encoder_cur, position_next, rawmask_hidden, rawmask_cur, rawmask_next, largest_object, object_cur, object_next, object_hidden, slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next, slots_closed, gt_positions_target_next, association_table, error_next, output_hidden, object_view, individual_views, statistics_complete_slots, statistics_batch, sequence_len, root_path, plot_path, t_index, t, i):
# Create eposition helpers
size, gaus2d, vector2d, scale = get_position_helper(cfg_net, mask_cur.device)
# Compute plot content
highlighted_input = get_highlighted_input(input, mask_cur)
output = th.clip(output_next, 0, 1)
position_cur2d = gaus2d(rearrange(position_encoder_cur, 'b (o c) -> (b o) c', o=cfg_net.num_objects))
velocity_next2d = vector2d(rearrange(position_next, 'b (o c) -> (b o) c', o=cfg_net.num_objects))
# color slots
slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next = reshape_slots(slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next)
position_cur2d = color_slots(position_cur2d, slots_bounded, slots_partially_occluded_cur, slots_occluded_cur)
velocity_next2d = color_slots(velocity_next2d, slots_bounded, slots_partially_occluded_next, slots_occluded_next)
# compute occlusion
if (cfg.datatype == "adept"):
rawmask_cur_l, rawmask_next_l = compute_occlusion_mask(rawmask_cur, rawmask_next, mask_cur, mask_next, scale)
rawmask_cur_h, rawmask_next_h = compute_occlusion_mask(rawmask_cur, rawmask_hidden, mask_cur, mask_next, scale)
rawmask_cur_h[:,largest_object] = rawmask_cur_l[:,largest_object]
rawmask_next_h[:,largest_object] = rawmask_next_l[:,largest_object]
rawmask_cur = rawmask_cur_h
rawmask_next = rawmask_next_h
object_hidden[:, largest_object] = object_next[:, largest_object]
object_next = object_hidden
else:
rawmask_cur, rawmask_next = compute_occlusion_mask(rawmask_cur, rawmask_next, mask_cur, mask_next, scale)
# scale plot content
input, target, output, highlighted_input, object_next, object_cur, mask_next, error_next, output_hidden, output_next = preprocess_multi(input, target, output, highlighted_input, object_next, object_cur, mask_next, error_next, output_hidden, output_next, scale=scale)
# reshape
object_next = rearrange(object_next, 'b (o c) h w -> b o c h w', c = cfg_net.img_channels)
object_cur = rearrange(object_cur, 'b (o c) h w -> b o c h w', c = cfg_net.img_channels)
mask_next = rearrange(mask_next, 'b (o 1) h w -> b o 1 h w')
if object_view:
if (cfg.datatype == "adept"):
num_objects = 4
error_plot_slots = plot_online_error_slots(statistics_complete_slots['TE'][-cfg_net.num_objects*(t+1):], 'Tracking error', target, sequence_len, root_path, statistics_complete_slots['visible'][-cfg_net.num_objects*(t+1):], slots_bounded)
error_plot_slots2 = plot_online_error_slots(statistics_complete_slots['slot_error'][-cfg_net.num_objects*(t+1):], 'Image error', target, sequence_len, root_path, statistics_complete_slots['visible'][-cfg_net.num_objects*(t+1):], slots_bounded, ylim=0.0001)
error_plot = plot_online_error(statistics_batch['image_error'], 'Prediction error', target, t, i, sequence_len, root_path)
error_plot2 = plot_online_error(statistics_batch['TE'], 'Tracking error', target, t, i, sequence_len, root_path)
img = plot_object_view(error_plot, error_plot2, error_plot_slots, error_plot_slots2, highlighted_input, output_hidden, object_next, rawmask_next, velocity_next2d, target, slots_closed, gt_positions_target_next, association_table, size, num_objects, largest_object)
else:
num_objects = cfg_net.num_objects
error_plot_slots2 = plot_online_error_slots(statistics_complete_slots['slot_error'][-cfg_net.num_objects*(t+1):], 'Image error', target, sequence_len, root_path, statistics_complete_slots['slot_error'][-cfg_net.num_objects*(t+1):], slots_bounded, ylim=0.0001)
error_plot = plot_online_error(statistics_batch['image_error_mse'], 'Prediction error', target, t, i, sequence_len, root_path)
img = plot_object_view(error_plot, None, None, error_plot_slots2, highlighted_input, output_next, object_next, rawmask_next, velocity_next2d, target, slots_closed, None, None, size, num_objects, largest_object)
cv2.imwrite(f'{plot_path}object/gpnet-objects-{i:04d}-{t_index:03d}.jpg', img)
if individual_views:
# ['error', 'input', 'background', 'prediction', 'position', 'rawmask', 'mask', 'othermask']:
write_image(f'{plot_path}/individual/error/error-{i:04d}-{t_index:03d}.jpg', error_next[0])
write_image(f'{plot_path}/individual/input/input-{i:04d}-{t_index:03d}.jpg', input[0])
write_image(f'{plot_path}/individual/background/background-{i:04d}-{t_index:03d}.jpg', mask_next[0,-1])
write_image(f'{plot_path}/individual/imagination/imagination-{i:04d}-{t_index:03d}.jpg', output_hidden[0])
write_image(f'{plot_path}/individual/prediction/prediction-{i:04d}-{t_index:03d}.jpg', output_next[0])
pass
def get_position_helper(cfg_net, device):
size = cfg_net.input_size
gaus2d = Gaus2D(size).to(device)
vector2d = Vector2D(size).to(device)
scale = size[0] // (cfg_net.latent_size[0] * 2**(cfg_net.level*2))
return size,gaus2d,vector2d,scale
def reshape_slots(slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next):
slots_bounded = th.squeeze(slots_bounded)[..., None,None,None]
slots_partially_occluded_cur = th.squeeze(slots_partially_occluded_cur)[..., None,None,None]
slots_occluded_cur = th.squeeze(slots_occluded_cur)[..., None,None,None]
slots_partially_occluded_next = th.squeeze(slots_partially_occluded_next)[..., None,None,None]
slots_occluded_next = th.squeeze(slots_occluded_next)[..., None,None,None]
return slots_bounded, slots_partially_occluded_cur, slots_occluded_cur, slots_partially_occluded_next, slots_occluded_next
|