1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
import torch as th
from torch import nn
from torch.utils.data import DataLoader
import numpy as np
from einops import rearrange, repeat, reduce
from scripts.utils.configuration import Configuration
from model.loci import Loci
import time
import lpips
from skimage.metrics import structural_similarity as ssimloss
from skimage.metrics import peak_signal_noise_ratio as psnrloss
def validation_adept(valloader: DataLoader, net: Loci, cfg: Configuration, device):
# memory
mseloss = nn.MSELoss()
avgloss = 0
start_time = time.time()
with th.no_grad():
for i, input in enumerate(valloader):
# get input frame and target frame
tensor = input[0].float().to(device)
background_fix = input[1].to(device)
# apply skip frames
tensor = tensor[:,range(0, tensor.shape[1], cfg.defaults.skip_frames)]
sequence_len = tensor.shape[1]
# initial frame
input = tensor[:,0]
target = th.clip(tensor[:,0], 0, 1)
error_last = None
# placehodlers
mask_cur = None
mask_last = None
rawmask_last = None
position_last = None
gestalt_last = None
priority_last = None
gt_positions_target = None
slots_occlusionfactor = None
# loop through frames
for t_index,t in enumerate(range(-cfg.defaults.teacher_forcing, sequence_len-1)):
# move to next frame
t_run = max(t, 0)
input = tensor[:,t_run]
target = th.clip(tensor[:,t_run+1], 0, 1)
# obtain prediction
(
output_next,
position_next,
gestalt_next,
priority_next,
mask_next,
rawmask_next,
object_next,
background,
slots_occlusionfactor,
output_cur,
position_cur,
gestalt_cur,
priority_cur,
mask_cur,
rawmask_cur,
object_cur,
position_encoder_cur,
slots_bounded,
slots_partially_occluded_cur,
slots_occluded_cur,
slots_partially_occluded_next,
slots_occluded_next,
slots_closed,
output_hidden,
largest_object,
rawmask_hidden,
object_hidden
) = net(
input,
error_last,
mask_last,
rawmask_last,
position_last,
gestalt_last,
priority_last,
background_fix,
slots_occlusionfactor,
reset = (t == -cfg.defaults.teacher_forcing),
evaluate=True,
warmup = (t < 0),
shuffleslots = False,
reset_mask = (t <= 0),
allow_spawn = True,
show_hidden = False,
clean_slots = (t <= 0),
)
# 1. Track error
if t >= 0:
loss = mseloss(output_next, target)
avgloss += loss.item()
# 2. Remember output
mask_last = mask_next.clone()
rawmask_last = rawmask_next.clone()
position_last = position_next.clone()
gestalt_last = gestalt_next.clone()
priority_last = priority_next.clone()
# 3. Error for next frame
# background error
bg_error_cur = th.sqrt(reduce((input - background)**2, 'b c h w -> b 1 h w', 'mean')).detach()
bg_error_next = th.sqrt(reduce((target - background)**2, 'b c h w -> b 1 h w', 'mean')).detach()
# prediction error
error_next = th.sqrt(reduce((target - output_next)**2, 'b c h w -> b 1 h w', 'mean')).detach()
error_next = th.sqrt(error_next) * bg_error_next
error_last = error_next.clone()
print(f"Validation loss: {avgloss / len(valloader.dataset):.2e}, Time: {time.time() - start_time}")
pass
def validation_clevrer(valloader: DataLoader, net: Loci, cfg: Configuration, device):
# memory
mseloss = nn.MSELoss()
lpipsloss = lpips.LPIPS(net='vgg').to(device)
avgloss_mse = 0
avgloss_lpips = 0
avgloss_psnr = 0
avgloss_ssim = 0
start_time = time.time()
burn_in_length = 6
rollout_length = 42
with th.no_grad():
for i, input in enumerate(valloader):
# get input frame and target frame
tensor = input[0].float().to(device)
background_fix = input[1].to(device)
# apply skip frames
tensor = tensor[:,range(0, tensor.shape[1], cfg.defaults.skip_frames)]
sequence_len = tensor.shape[1]
# initial frame
input = tensor[:,0]
target = th.clip(tensor[:,0], 0, 1)
error_last = None
# placehodlers
mask_cur = None
mask_last = None
rawmask_last = None
position_last = None
gestalt_last = None
priority_last = None
gt_positions_target = None
slots_occlusionfactor = None
# loop through frames
for t_index,t in enumerate(range(-cfg.defaults.teacher_forcing, min(burn_in_length + rollout_length-1, sequence_len-1))):
# move to next frame
t_run = max(t, 0)
input = tensor[:,t_run]
target = th.clip(tensor[:,t_run+1], 0, 1)
if t_run >= burn_in_length:
blackout = th.tensor((np.random.rand(valloader.batch_size) < 0.2)[:,None,None,None]).float().to(device)
input = blackout * (input * 0) + (1-blackout) * input
error_last = blackout * (error_last * 0) + (1-blackout) * error_last
# obtain prediction
(
output_next,
position_next,
gestalt_next,
priority_next,
mask_next,
rawmask_next,
object_next,
background,
slots_occlusionfactor,
output_cur,
position_cur,
gestalt_cur,
priority_cur,
mask_cur,
rawmask_cur,
object_cur,
position_encoder_cur,
slots_bounded,
slots_partially_occluded_cur,
slots_occluded_cur,
slots_partially_occluded_next,
slots_occluded_next,
slots_closed,
output_hidden,
largest_object,
rawmask_hidden,
object_hidden
) = net(
input,
error_last,
mask_last,
rawmask_last,
position_last,
gestalt_last,
priority_last,
background_fix,
slots_occlusionfactor,
reset = (t == -cfg.defaults.teacher_forcing),
evaluate=True,
warmup = (t < 0),
shuffleslots = False,
reset_mask = (t <= 0),
allow_spawn = True,
show_hidden = False,
clean_slots = (t <= 0),
)
# 1. Track error
if t >= 0:
loss_mse = mseloss(output_next, target)
loss_ssim = np.sum([ssimloss(output_next[i].cpu().numpy(), target[i].cpu().numpy(), channel_axis=0,gaussian_weights=True,sigma=1.5,use_sample_covariance=False,data_range=1) for i in range(output_next.shape[0])]),
loss_psnr = np.sum([psnrloss(output_next[i].cpu().numpy(), target[i].cpu().numpy(), data_range=1) for i in range(output_next.shape[0])]),
loss_lpips = th.sum(lpipsloss(output_next*2-1, target*2-1))
avgloss_mse += loss_mse.item()
avgloss_ssim += loss_ssim[0].item()
avgloss_psnr += loss_psnr[0].item()
avgloss_lpips += loss_lpips.item()
# 2. Remember output
mask_last = mask_next.clone()
rawmask_last = rawmask_next.clone()
position_last = position_next.clone()
gestalt_last = gestalt_next.clone()
priority_last = priority_next.clone()
# 3. Error for next frame
# background error
bg_error_next = th.sqrt(reduce((target - background)**2, 'b c h w -> b 1 h w', 'mean')).detach()
# prediction error
error_next = th.sqrt(reduce((target - output_next)**2, 'b c h w -> b 1 h w', 'mean')).detach()
error_next = th.sqrt(error_next) * bg_error_next
error_last = error_next.clone()
print(f"MSE loss: {avgloss_mse / len(valloader.dataset):.2e}, LPIPS loss: {avgloss_lpips / len(valloader.dataset):.2e}, PSNR loss: {avgloss_psnr / len(valloader.dataset):.2e}, SSIM loss: {avgloss_ssim / len(valloader.dataset):.2e}, Time: {time.time() - start_time}")
pass
|