aboutsummaryrefslogtreecommitdiff
path: root/scripts/validation.py
blob: 5b1638dedaf2ec74139956cf98a48c50f2bff470 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import torch as th
from torch import nn
from torch.utils.data import DataLoader
import numpy as np
from einops import rearrange, repeat, reduce
from scripts.utils.configuration import Configuration
from model.loci import Loci
import time
import lpips
from skimage.metrics import structural_similarity as ssimloss
from skimage.metrics import peak_signal_noise_ratio as psnrloss

def validation_adept(valloader: DataLoader, net: Loci, cfg: Configuration, device):

    # memory
    mseloss = nn.MSELoss()
    avgloss = 0
    start_time = time.time()

    with th.no_grad():
        for i, input in enumerate(valloader):

            # get input frame and target frame
            tensor = input[0].float().to(device)
            background_fix  = input[1].to(device)

            # apply skip frames
            tensor = tensor[:,range(0, tensor.shape[1], cfg.defaults.skip_frames)]
            sequence_len = tensor.shape[1]

            # initial frame
            input  = tensor[:,0]
            target = th.clip(tensor[:,0], 0, 1)
            error_last  = None

            # placehodlers
            mask_cur       = None
            mask_last      = None
            rawmask_last   = None
            position_last  = None
            gestalt_last   = None
            priority_last  = None
            gt_positions_target = None
            slots_occlusionfactor = None

            # loop through frames
            for t_index,t in enumerate(range(-cfg.defaults.teacher_forcing, sequence_len-1)):

                # move to next frame
                t_run = max(t, 0)
                input  = tensor[:,t_run]
                target = th.clip(tensor[:,t_run+1], 0, 1)

                # obtain prediction
                (
                    output_next, 
                    position_next, 
                    gestalt_next, 
                    priority_next, 
                    mask_next, 
                    rawmask_next,
                    object_next, 
                    background, 
                    slots_occlusionfactor,
                    output_cur,
                    position_cur,
                    gestalt_cur,
                    priority_cur,
                    mask_cur,
                    rawmask_cur,
                    object_cur,
                    position_encoder_cur,
                    slots_bounded,
                    slots_partially_occluded_cur,   
                    slots_occluded_cur,
                    slots_partially_occluded_next,
                    slots_occluded_next,
                    slots_closed,
                    output_hidden,
                    largest_object,
                    rawmask_hidden,
                    object_hidden
                ) = net(
                    input, 
                    error_last,
                    mask_last, 
                    rawmask_last,
                    position_last, 
                    gestalt_last,
                    priority_last,
                    background_fix,
                    slots_occlusionfactor,
                    reset = (t == -cfg.defaults.teacher_forcing),
                    evaluate=True,
                    warmup = (t < 0),
                    shuffleslots = False,
                    reset_mask = (t <= 0),
                    allow_spawn = True,
                    show_hidden = False,
                    clean_slots = (t <= 0),
                )

                # 1. Track error
                if t >= 0:
                    loss = mseloss(output_next, target)
                    avgloss += loss.item()

                # 2. Remember output
                mask_last     = mask_next.clone()
                rawmask_last  = rawmask_next.clone()
                position_last = position_next.clone()
                gestalt_last  = gestalt_next.clone()
                priority_last = priority_next.clone()
                        
                # 3. Error for next frame
                # background error
                bg_error_cur  = th.sqrt(reduce((input - background)**2, 'b c h w -> b 1 h w', 'mean')).detach()
                bg_error_next = th.sqrt(reduce((target - background)**2, 'b c h w -> b 1 h w', 'mean')).detach()

                # prediction error
                error_next    = th.sqrt(reduce((target - output_next)**2, 'b c h w -> b 1 h w', 'mean')).detach()
                error_next    = th.sqrt(error_next) * bg_error_next
                error_last    = error_next.clone()

    print(f"Validation loss: {avgloss / len(valloader.dataset):.2e}, Time: {time.time() - start_time}")
            
    pass


def validation_clevrer(valloader: DataLoader, net: Loci, cfg: Configuration, device):

    # memory
    mseloss = nn.MSELoss()
    lpipsloss = lpips.LPIPS(net='vgg').to(device)
    avgloss_mse = 0
    avgloss_lpips = 0
    avgloss_psnr = 0
    avgloss_ssim = 0
    start_time = time.time()

    burn_in_length = 6
    rollout_length = 42

    with th.no_grad():
        for i, input in enumerate(valloader):

            # get input frame and target frame
            tensor = input[0].float().to(device)
            background_fix  = input[1].to(device)

            # apply skip frames
            tensor = tensor[:,range(0, tensor.shape[1], cfg.defaults.skip_frames)]
            sequence_len = tensor.shape[1]

            # initial frame
            input  = tensor[:,0]
            target = th.clip(tensor[:,0], 0, 1)
            error_last  = None

            # placehodlers
            mask_cur       = None
            mask_last      = None
            rawmask_last   = None
            position_last  = None
            gestalt_last   = None
            priority_last  = None
            gt_positions_target = None
            slots_occlusionfactor = None

            # loop through frames
            for t_index,t in enumerate(range(-cfg.defaults.teacher_forcing, min(burn_in_length + rollout_length-1, sequence_len-1))):

                # move to next frame
                t_run = max(t, 0)
                input  = tensor[:,t_run]
                target = th.clip(tensor[:,t_run+1], 0, 1)
                if t_run >= burn_in_length:
                    blackout    = th.tensor((np.random.rand(valloader.batch_size) < 0.2)[:,None,None,None]).float().to(device)
                    input       = blackout * (input * 0)         + (1-blackout) * input
                    error_last  = blackout * (error_last * 0)    + (1-blackout) * error_last

                # obtain prediction
                (
                    output_next, 
                    position_next, 
                    gestalt_next, 
                    priority_next, 
                    mask_next, 
                    rawmask_next,
                    object_next, 
                    background, 
                    slots_occlusionfactor,
                    output_cur,
                    position_cur,
                    gestalt_cur,
                    priority_cur,
                    mask_cur,
                    rawmask_cur,
                    object_cur,
                    position_encoder_cur,
                    slots_bounded,
                    slots_partially_occluded_cur,   
                    slots_occluded_cur,
                    slots_partially_occluded_next,
                    slots_occluded_next,
                    slots_closed,
                    output_hidden,
                    largest_object,
                    rawmask_hidden,
                    object_hidden
                ) = net(
                    input, 
                    error_last,
                    mask_last, 
                    rawmask_last,
                    position_last, 
                    gestalt_last,
                    priority_last,
                    background_fix,
                    slots_occlusionfactor,
                    reset = (t == -cfg.defaults.teacher_forcing),
                    evaluate=True,
                    warmup = (t < 0),
                    shuffleslots = False,
                    reset_mask = (t <= 0),
                    allow_spawn = True,
                    show_hidden = False,
                    clean_slots = (t <= 0),
                )

                # 1. Track error
                if t >= 0:
                    loss_mse    = mseloss(output_next, target)
                    loss_ssim   = np.sum([ssimloss(output_next[i].cpu().numpy(), target[i].cpu().numpy(), channel_axis=0,gaussian_weights=True,sigma=1.5,use_sample_covariance=False,data_range=1) for i in range(output_next.shape[0])]),
                    loss_psnr   = np.sum([psnrloss(output_next[i].cpu().numpy(), target[i].cpu().numpy(), data_range=1)  for i in range(output_next.shape[0])]),
                    loss_lpips  = th.sum(lpipsloss(output_next*2-1, target*2-1))

                    avgloss_mse += loss_mse.item()
                    avgloss_ssim += loss_ssim[0].item()
                    avgloss_psnr += loss_psnr[0].item()
                    avgloss_lpips += loss_lpips.item()

                # 2. Remember output
                mask_last     = mask_next.clone()
                rawmask_last  = rawmask_next.clone()
                position_last = position_next.clone()
                gestalt_last  = gestalt_next.clone()
                priority_last = priority_next.clone()
                        
                # 3. Error for next frame
                # background error
                bg_error_next = th.sqrt(reduce((target - background)**2, 'b c h w -> b 1 h w', 'mean')).detach()

                # prediction error
                error_next    = th.sqrt(reduce((target - output_next)**2, 'b c h w -> b 1 h w', 'mean')).detach()
                error_next    = th.sqrt(error_next) * bg_error_next
                error_last    = error_next.clone()

    print(f"MSE loss: {avgloss_mse / len(valloader.dataset):.2e}, LPIPS loss: {avgloss_lpips / len(valloader.dataset):.2e}, PSNR loss: {avgloss_psnr / len(valloader.dataset):.2e}, SSIM loss: {avgloss_ssim / len(valloader.dataset):.2e}, Time: {time.time() - start_time}")
            
    pass