1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
// MIT License, Copyright (c) 2020 Marvin Borner
#include <assert.h>
#include <def.h>
#include <fs.h>
#include <ide.h>
#include <mem.h>
#include <print.h>
#include <random.h>
#include <str.h>
/**
* VFS
*/
static struct list *mount_points = NULL;
struct device *vfs_mounted(const char *path)
{
struct node *iterator = mount_points->head;
while (iterator) {
struct mount_info *m = iterator->data;
printf("Looping %s\n", m->path);
if (!strcmp(m->path, path))
return m->dev;
iterator = iterator->next;
}
return NULL;
}
u32 vfs_mount(struct device *dev, const char *path)
{
if (!dev || !dev->id || vfs_mounted(path))
return 0;
struct mount_info *m = malloc(sizeof(*m));
m->path = strdup(path);
m->dev = dev;
list_add(mount_points, m);
return 1;
}
void vfs_install(void)
{
mount_points = list_new();
}
/**
* Device
*/
static struct list *devices = NULL;
void device_add(struct device *dev)
{
dev->id = rand() + 1;
list_add(devices, dev);
}
struct device *device_get(u32 id)
{
struct node *iterator = devices->head;
while (iterator) {
if (((struct device *)iterator->data)->id == id)
return iterator->data;
iterator = iterator->next;
}
return NULL;
}
void device_install(void)
{
devices = list_new();
struct vfs *vfs = malloc(sizeof(*vfs));
vfs->name = strdup("devfs");
struct device *dev = malloc(sizeof(*dev));
dev->name = "dev";
dev->vfs = vfs;
device_add(dev);
vfs_mount(dev, "/dev/");
}
/**
* EXT2
*/
void *buffer_read(u32 block)
{
return ide_read(malloc(BLOCK_SIZE), block);
}
struct superblock *get_superblock(void)
{
struct superblock *sb = buffer_read(EXT2_SUPER);
if (sb->magic != EXT2_MAGIC)
return NULL;
return sb;
}
struct bgd *get_bgd(void)
{
return buffer_read(EXT2_SUPER + 1);
}
struct inode *get_inode(u32 i)
{
struct superblock *s = get_superblock();
assert(s);
struct bgd *b = get_bgd();
assert(b);
u32 block_group = (i - 1) / s->inodes_per_group;
u32 index = (i - 1) % s->inodes_per_group;
u32 block = (index * INODE_SIZE) / BLOCK_SIZE;
b += block_group;
u32 *data = buffer_read(b->inode_table + block);
struct inode *in =
(struct inode *)((u32)data + (index % (BLOCK_SIZE / INODE_SIZE)) * INODE_SIZE);
return in;
}
u32 read_indirect(u32 indirect, u32 block_num)
{
char *data = buffer_read(indirect);
return *(u32 *)((u32)data + block_num * sizeof(u32));
}
void *read_inode(struct inode *in)
{
assert(in);
if (!in)
return NULL;
u32 num_blocks = in->blocks / (BLOCK_SIZE / SECTOR_SIZE);
assert(num_blocks != 0);
if (!num_blocks)
return NULL;
/* u32 sz = BLOCK_SIZE * num_blocks; */
u32 sz = in->size;
void *buf = malloc(sz);
printf("Loading %dKiB\n", sz >> 10);
assert(buf != NULL);
u32 indirect = 0;
u32 blocknum = 0;
char *data = 0;
// TODO: Support triply indirect pointers
// TODO: This can be heavily optimized by saving the indirect block lists
for (u32 i = 0; i < num_blocks; i++) {
if (i < 12) {
blocknum = in->block[i];
data = buffer_read(blocknum);
memcpy((u32 *)((u32)buf + i * BLOCK_SIZE), data, BLOCK_SIZE);
} else if (i < BLOCK_COUNT + 12) {
indirect = in->block[12];
blocknum = read_indirect(indirect, i - 12);
data = buffer_read(blocknum);
memcpy((u32 *)((u32)buf + i * BLOCK_SIZE), data, BLOCK_SIZE);
} else {
indirect = in->block[13];
blocknum = read_indirect(indirect, (i - (BLOCK_COUNT + 12)) / BLOCK_COUNT);
blocknum = read_indirect(blocknum, (i - (BLOCK_COUNT + 12)) % BLOCK_COUNT);
data = buffer_read(blocknum);
memcpy((u32 *)((u32)buf + i * BLOCK_SIZE), data, BLOCK_SIZE);
}
/* printf("Loaded %d of %d\n", i + 1, num_blocks); */
}
return buf;
}
u32 find_inode(const char *name, u32 dir_inode)
{
if (!dir_inode)
return (unsigned)-1;
struct inode *i = get_inode(dir_inode);
char *buf = malloc(BLOCK_SIZE * i->blocks / 2);
memset(buf, 0, BLOCK_SIZE * i->blocks / 2);
for (u32 q = 0; q < i->blocks / 2; q++) {
char *data = buffer_read(i->block[q]);
memcpy((u32 *)((u32)buf + q * BLOCK_SIZE), data, BLOCK_SIZE);
}
struct dirent *d = (struct dirent *)buf;
u32 sum = 0;
do {
// Calculate the 4byte aligned size of each entry
sum += d->total_len;
if (strlen(name) == d->name_len &&
strncmp((void *)d->name, name, d->name_len) == 0) {
free(buf);
return d->inode_num;
}
d = (struct dirent *)((u32)d + d->total_len);
} while (sum < (1024 * i->blocks / 2));
free(buf);
return (unsigned)-1;
}
struct inode *find_inode_by_path(char *path)
{
if (path[0] != '/')
return 0;
path++;
u32 current_inode = EXT2_ROOT;
int i = 0;
while (1) {
for (i = 0; path[i] != '/' && path[i] != '\0'; i++)
;
if (path[i] == '\0')
break;
path[i] = '\0';
current_inode = find_inode(path, current_inode);
path[i] = '/';
if (current_inode == 0)
return 0;
path += i + 1;
}
u32 inode = find_inode(path, current_inode);
if ((signed)inode <= 0)
return 0;
return get_inode(inode);
}
void *file_read(char *path)
{
struct inode *in = find_inode_by_path(path);
if (in)
return read_inode(in);
else
return NULL;
}
u32 file_stat(char *path)
{
struct inode *in = find_inode_by_path(path);
if (!in)
return 0;
return in->size;
}
|