1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
|
// Hugely inspired by the implementation in skiftOS: MIT License, Copyright (c) 2020 N. Van Bossuyt
// MIT License, Copyright (c) 2021 Marvin Borner
#include <assert.h>
#include <cpu.h>
#include <def.h>
#include <errno.h>
#include <fb.h>
#include <mem.h>
#include <mm.h>
#include <print.h>
#include <random.h>
PROTECTED static struct page_dir kernel_dir ALIGNED(PAGE_SIZE) = { 0 };
static struct page_table kernel_tables[PAGE_KERNEL_COUNT] ALIGNED(PAGE_SIZE) = { 0 };
extern u32 kernel_rw_start;
extern u32 kernel_rw_end;
extern u32 kernel_ro_start;
extern u32 kernel_ro_end;
extern u32 kernel_temp_clear_start;
extern u32 kernel_temp_clear_end;
extern u32 kernel_temp_protect_start;
extern u32 kernel_temp_protect_end;
/**
* Lowlevel paging
*/
static void paging_switch_dir(u32 dir)
{
cr3_set(dir);
}
CLEAR extern void paging_invalidate_tlb(void);
CLEAR void paging_disable(void)
{
cr0_set(cr0_get() | 0x7fffffff);
}
CLEAR void paging_enable(void)
{
cr0_set(cr0_get() | 0x80010000);
}
static const char *page_fault_section(u32 addr)
{
const char *section = NULL;
if (addr == 0)
section = "NULL";
else if (addr >= (u32)&kernel_temp_clear_start && addr <= (u32)&kernel_temp_clear_end)
section = "kernel_temp_clear";
else if (addr >= (u32)&kernel_temp_protect_start && addr <= (u32)&kernel_temp_protect_end)
section = "kernel_temp_protect";
else if (addr >= (u32)&kernel_rw_start && addr <= (u32)&kernel_rw_end)
section = "kernel_rw";
else if (addr >= (u32)&kernel_ro_start && addr <= (u32)&kernel_ro_end)
section = "kernel_ro";
else
section = "UNKNOWN";
return section;
}
void page_fault_handler(struct regs *r)
{
print("--- PAGE FAULT! ---\n");
// Check error code
const char *type = (r->err_code & 1) ? "present" : "non-present";
const char *operation = (r->err_code & 2) ? "write" : "read";
const char *super = (r->err_code & 4) ? "User" : "Super";
// Check cr2 address (virtual and physical)
u32 vaddr;
__asm__ volatile("movl %%cr2, %%eax" : "=a"(vaddr));
struct proc *proc = proc_current();
struct page_dir *dir = proc && proc->page_dir ? proc->page_dir : &kernel_dir;
u32 paddr = virtual_to_physical(dir, vaddr);
// Print!
printf("%s process tried to %s a %s page at [vaddr=%x; paddr=%x]\n", super, operation, type,
vaddr, paddr);
if (proc && vaddr > proc->regs.ebp - PROC_STACK_SIZE - PAGE_SIZE &&
vaddr < proc->regs.ebp + PAGE_SIZE)
print("Probably a stack overflow\n");
printf("Sections: [vaddr_section=%s; paddr_section=%s; eip_section=%s]\n",
page_fault_section(vaddr), page_fault_section(paddr), page_fault_section(r->eip));
isr_panic(r);
}
/**
* Physical
*/
static u32 memory_used = 0;
PROTECTED static u32 memory_total = 0;
static u32 best_bet = 0;
static u8 memory[PAGE_COUNT * PAGE_COUNT / 8] = { 0 };
static u8 physical_page_is_used(u32 addr)
{
u32 page = addr / PAGE_SIZE;
return memory[page / 8] & (1 << (page % 8));
}
static void physical_page_set_used(u32 address)
{
u32 page = address / PAGE_SIZE;
if (page == best_bet)
best_bet++;
memory[page / 8] |= 1 << (page % 8);
}
static void physical_page_set_free(u32 address)
{
u32 page = address / PAGE_SIZE;
if (page < best_bet)
best_bet = page;
memory[page / 8] &= ~(1 << (page % 8));
}
static void physical_set_used(struct memory_range range)
{
assert(PAGE_ALIGNED(range.base) && PAGE_ALIGNED(range.size));
for (u32 i = 0; i < range.size / PAGE_SIZE; i++) {
u32 addr = range.base + i * PAGE_SIZE;
if (!physical_page_is_used(addr)) {
memory_used += PAGE_SIZE;
physical_page_set_used(addr);
}
}
}
static void physical_set_free(struct memory_range range)
{
assert(PAGE_ALIGNED(range.base) && PAGE_ALIGNED(range.size));
for (u32 i = 0; i < range.size / PAGE_SIZE; i++) {
u32 addr = range.base + i * PAGE_SIZE;
if (physical_page_is_used(addr)) {
memory_used -= PAGE_SIZE;
physical_page_set_free(addr);
}
}
}
static u8 physical_is_used(struct memory_range range)
{
assert(PAGE_ALIGNED(range.base) && PAGE_ALIGNED(range.size));
for (u32 i = 0; i < range.size / PAGE_SIZE; i++) {
u32 addr = range.base + i * PAGE_SIZE;
if (physical_page_is_used(addr))
return 1;
}
return 0;
}
struct memory_range physical_alloc(u32 size)
{
assert(PAGE_ALIGNED(size));
for (u32 i = best_bet; i < ((memory_total - size) / PAGE_SIZE); i++) {
struct memory_range range = memory_range(i * PAGE_SIZE, size);
if (!physical_is_used(range)) {
physical_set_used(range);
return range;
}
}
panic("Out of physical memory!\n");
return memory_range(0, 0);
}
void physical_free(struct memory_range range)
{
assert(PAGE_ALIGNED(range.base) && PAGE_ALIGNED(range.size));
physical_set_free(range);
}
/**
* Virtual
*/
#define PDI(vaddr) ((vaddr) >> 22)
#define PTI(vaddr) (((vaddr) >> 12) & 0x03ff)
u8 virtual_present(struct page_dir *dir, u32 vaddr)
{
u32 pdi = PDI(vaddr);
union page_dir_entry *dir_entry = &dir->entries[pdi];
if (!dir_entry->bits.present)
return 0;
struct page_table *table = (struct page_table *)(dir_entry->bits.address * PAGE_SIZE);
u32 pti = PTI(vaddr);
union page_table_entry *table_entry = &table->entries[pti];
return table_entry->bits.present;
}
u32 virtual_to_physical(struct page_dir *dir, u32 vaddr)
{
u32 pdi = PDI(vaddr);
union page_dir_entry *dir_entry = &dir->entries[pdi];
if (!dir_entry->bits.present)
return 0;
struct page_table *table = (struct page_table *)(dir_entry->bits.address * PAGE_SIZE);
u32 pti = PTI(vaddr);
union page_table_entry *table_entry = &table->entries[pti];
if (!table_entry->bits.present)
return 0;
return (table_entry->bits.address * PAGE_SIZE) + (vaddr & (PAGE_SIZE - 1));
}
void virtual_map(struct page_dir *dir, struct memory_range prange, u32 vaddr, u32 flags)
{
for (u32 i = 0; i < prange.size / PAGE_SIZE; i++) {
u32 offset = i * PAGE_SIZE;
u32 pdi = PDI(vaddr + offset);
union page_dir_entry *dir_entry = &dir->entries[pdi];
struct page_table *table =
(struct page_table *)(dir_entry->bits.address * PAGE_SIZE);
if (!dir_entry->bits.present) {
table = memory_alloc_identity(dir, MEMORY_CLEAR);
dir_entry->bits.present = 1;
dir_entry->bits.writable = 1;
dir_entry->bits.user = 1;
dir_entry->bits.address = (u32)(table) >> 12;
}
u32 pti = PTI(vaddr + offset);
union page_table_entry *table_entry = &table->entries[pti];
table_entry->bits.present = 1;
table_entry->bits.writable = !(flags & MEMORY_READONLY);
table_entry->bits.user = flags & MEMORY_USER;
table_entry->bits.address = (prange.base + offset) >> 12;
}
paging_invalidate_tlb();
}
void virtual_remap_readonly(struct page_dir *dir, struct memory_range vrange)
{
for (u32 i = 0; i < vrange.size / PAGE_SIZE; i++) {
u32 offset = i * PAGE_SIZE;
u32 pdi = PDI(vrange.base + offset);
union page_dir_entry *dir_entry = &dir->entries[pdi];
if (!dir_entry->bits.present)
continue;
struct page_table *table =
(struct page_table *)(dir_entry->bits.address * PAGE_SIZE);
u32 pti = PTI(vrange.base + offset);
union page_table_entry *table_entry = &table->entries[pti];
if (table_entry->bits.present)
table_entry->bits.writable = 0;
}
paging_invalidate_tlb();
}
struct memory_range virtual_alloc(struct page_dir *dir, struct memory_range prange, u32 flags)
{
u8 user = flags & MEMORY_USER;
u32 vaddr = 0;
u32 size = 0;
for (u32 i = (user ? PAGE_KERNEL_COUNT : 1) * PAGE_COUNT;
i < (user ? PAGE_COUNT : PAGE_KERNEL_COUNT) * PAGE_COUNT; i++) {
u32 addr = i * PAGE_SIZE;
if (!virtual_present(dir, addr)) {
if (size == 0)
vaddr = addr;
size += PAGE_SIZE;
if (size == prange.size) {
virtual_map(dir, prange, vaddr, flags);
return memory_range(vaddr, size);
}
} else {
size = 0;
}
}
panic("Out of virtual memory!\n");
return memory_range(0, 0);
}
void virtual_free(struct page_dir *dir, struct memory_range vrange)
{
for (u32 i = 0; i < vrange.size / PAGE_SIZE; i++) {
u32 offset = i * PAGE_SIZE;
u32 pdi = PDI(vrange.base + offset);
union page_dir_entry *dir_entry = &dir->entries[pdi];
if (!dir_entry->bits.present)
continue;
struct page_table *table =
(struct page_table *)(dir_entry->bits.address * PAGE_SIZE);
u32 pti = PTI(vrange.base + offset);
union page_table_entry *table_entry = &table->entries[pti];
if (table_entry->bits.present)
table_entry->uint = 0;
}
paging_invalidate_tlb();
}
struct page_dir *virtual_create_dir(void)
{
struct page_dir *dir = memory_alloc(&kernel_dir, sizeof(*dir), MEMORY_CLEAR);
memset(dir, 0, sizeof(*dir));
for (u32 i = 0; i < PAGE_KERNEL_COUNT; i++) {
union page_dir_entry *dir_entry = &dir->entries[i];
dir_entry->bits.present = 1;
dir_entry->bits.writable = 1;
dir_entry->bits.user = 0;
dir_entry->bits.address = (u32)&kernel_tables[i] / PAGE_SIZE;
}
return dir;
}
void virtual_destroy_dir(struct page_dir *dir)
{
assert(dir != &kernel_dir);
for (u32 i = PAGE_KERNEL_COUNT; i < PAGE_COUNT; i++) {
union page_dir_entry *dir_entry = &dir->entries[i];
if (dir_entry->bits.present) {
struct page_table *table =
(struct page_table *)(dir_entry->bits.address * PAGE_SIZE);
for (u32 j = 0; j < PAGE_COUNT; j++) {
union page_table_entry *table_entry = &table->entries[j];
if (table_entry->bits.present) {
u32 paddr = table_entry->bits.address * PAGE_SIZE;
physical_free(memory_range(paddr, PAGE_SIZE));
}
}
memory_free(&kernel_dir, memory_range((u32)table, sizeof(*table)));
}
}
memory_free(&kernel_dir, memory_range((u32)dir, sizeof(*dir)));
}
struct page_dir *virtual_kernel_dir(void)
{
return &kernel_dir;
}
/**
* Memory wrappers
*/
void *memory_alloc(struct page_dir *dir, u32 size, u32 flags)
{
if (!PAGE_ALIGNED(size) || !size)
goto err;
struct memory_range prange = physical_alloc(size);
if (prange.size == 0)
goto err;
u32 vaddr = virtual_alloc(dir, prange, flags).base;
if (!vaddr) {
physical_free(prange);
goto err;
}
if (flags & MEMORY_CLEAR)
memset_user((void *)vaddr, 0, size);
return (void *)vaddr;
err:
print("Memory allocation error!\n");
return NULL;
}
void *memory_alloc_identity(struct page_dir *dir, u32 flags)
{
for (u32 i = 1; i < PAGE_KERNEL_COUNT * PAGE_COUNT; i++) {
struct memory_range range = memory_range(i * PAGE_SIZE, PAGE_SIZE);
if (!virtual_present(dir, range.base) && !physical_is_used(range)) {
physical_set_used(range);
virtual_map(dir, range, range.base, flags);
if (flags & MEMORY_CLEAR)
memset((void *)range.base, 0, PAGE_SIZE);
return (void *)range.base;
}
}
print("Memory allocation error!\n");
return NULL;
}
void memory_free(struct page_dir *dir, struct memory_range vrange)
{
assert(PAGE_ALIGNED(vrange.base) && PAGE_ALIGNED(vrange.size));
for (u32 i = 0; i < vrange.size / PAGE_SIZE; i++) {
u32 vaddr = vrange.base + i * PAGE_SIZE;
if (virtual_present(dir, vaddr)) {
struct memory_range page_prange =
memory_range(virtual_to_physical(dir, vaddr), PAGE_SIZE);
struct memory_range page_vrange = memory_range(vaddr, PAGE_SIZE);
physical_free(page_prange);
virtual_free(dir, page_vrange);
}
}
}
void memory_map_identity(struct page_dir *dir, struct memory_range prange, u32 flags)
{
assert(PAGE_ALIGNED(prange.base) && PAGE_ALIGNED(prange.size));
physical_set_used(prange);
virtual_map(dir, prange, prange.base, flags);
if (flags & MEMORY_CLEAR)
memset((void *)prange.base, 0, prange.size);
}
static struct list *memory_objects = NULL;
res memory_sys_alloc(struct page_dir *dir, u32 size, u32 *addr, u32 *id, u8 shared)
{
if (!memory_valid(addr) || !memory_valid(id))
return -EFAULT;
size = PAGE_ALIGN_UP(size);
u32 vaddr = (u32)memory_alloc(dir, size, MEMORY_CLEAR | MEMORY_USER);
if (!vaddr)
return -ENOMEM;
struct memory_object *obj = zalloc(sizeof(*obj));
obj->id = rand() + 1;
obj->prange = memory_range(virtual_to_physical(dir, vaddr), size);
obj->refs = 1;
obj->shared = shared;
list_add(memory_objects, obj);
struct memory_proc_link *link = zalloc(sizeof(*link));
link->obj = obj;
link->vrange = memory_range(vaddr, size);
list_add(proc_current()->memory, link);
stac();
*addr = vaddr;
*id = obj->id;
clac();
return EOK;
}
res memory_sys_free(struct page_dir *dir, u32 addr)
{
if (!addr || !memory_valid((void *)addr))
return -EFAULT;
struct list *links = proc_current()->memory;
struct node *iterator = links->head;
while (iterator) {
struct memory_proc_link *link = iterator->data;
if (link->vrange.base == addr) {
virtual_free(dir, link->vrange);
link->obj->refs--;
if (link->obj->refs == 0) {
list_remove(memory_objects,
list_first_data(memory_objects, link->obj));
physical_free(link->obj->prange);
free(link->obj);
}
list_remove(links, list_first_data(links, link));
free(link);
return EOK;
}
iterator = iterator->next;
}
return -ENOENT;
}
res memory_sys_shaccess(struct page_dir *dir, u32 id, u32 *addr, u32 *size)
{
if (!memory_valid(addr) || !memory_valid(size))
return -EFAULT;
struct node *iterator = memory_objects->head;
while (iterator) {
struct memory_object *obj = iterator->data;
if (obj->id == id) {
if (!obj->shared)
return -EACCES;
obj->refs++;
struct memory_range shrange =
virtual_alloc(dir, obj->prange, MEMORY_CLEAR | MEMORY_USER);
stac();
*addr = shrange.base;
*size = shrange.size;
clac();
struct memory_proc_link *link = zalloc(sizeof(*link));
link->obj = obj;
link->vrange = shrange;
list_add(proc_current()->memory, link);
return EOK;
}
iterator = iterator->next;
}
stac();
*addr = 0;
*size = 0;
clac();
return -ENOENT;
}
void memory_switch_dir(struct page_dir *dir)
{
paging_switch_dir(virtual_to_physical(&kernel_dir, (u32)dir));
}
void memory_backup_dir(struct page_dir **backup)
{
struct proc *proc = proc_current();
struct page_dir *dir = proc ? proc->page_dir : virtual_kernel_dir();
*backup = dir;
}
static u8 memory_bypass_validity = 0;
void memory_bypass_enable(void)
{
memory_bypass_validity = 1;
}
void memory_bypass_disable(void)
{
memory_bypass_validity = 0;
}
u8 memory_is_user(u32 addr)
{
return PDI(addr) >= PAGE_KERNEL_COUNT;
}
// TODO: Limit by proc stack and data range
u8 memory_valid(const void *addr)
{
if (proc_current() && !memory_bypass_validity)
return memory_is_user((u32)addr);
else
return 1;
}
struct memory_range memory_range_from(u32 base, u32 size)
{
u32 align = PAGE_SIZE - base % PAGE_SIZE;
if (base % PAGE_SIZE == 0) {
align = 0;
}
base += align;
size -= align;
size -= size % PAGE_SIZE;
return memory_range(base, size);
}
struct memory_range memory_range_around(u32 base, u32 size)
{
u32 align = base % PAGE_SIZE;
base -= align;
size += align;
size += PAGE_SIZE - size % PAGE_SIZE;
return memory_range(base, size);
}
CLEAR static struct memory_range kernel_rw_memory_range(void)
{
return memory_range_around((u32)&kernel_rw_start,
(u32)&kernel_rw_end - (u32)&kernel_rw_start);
}
CLEAR static struct memory_range kernel_ro_memory_range(void)
{
return memory_range_around((u32)&kernel_ro_start,
(u32)&kernel_ro_end - (u32)&kernel_ro_start);
}
static void memory_temp_clear(void)
{
u8 *data = (u8 *)&kernel_temp_clear_start;
u32 size = (u32)&kernel_temp_clear_end - (u32)&kernel_temp_clear_start;
memset(data, 0, size);
memory_free(&kernel_dir, memory_range_around((u32)data, size));
printf("Cleared %dKiB\n", size >> 10);
}
CLEAR static void memory_temp_protect(void)
{
u32 data = (u32)&kernel_temp_protect_start;
u32 size = (u32)&kernel_temp_protect_end - (u32)&kernel_temp_protect_start;
memory_map_identity(&kernel_dir, memory_range_around((u32)data, size), MEMORY_READONLY);
printf("Protected %dKiB\n", size >> 10);
}
void memory_user_hook(void)
{
PROTECTED static u8 called = 0;
if (!called) {
called = 1;
memory_temp_protect();
memory_temp_clear();
}
}
CLEAR void memory_install(struct mem_info *mem_info, struct vid_info *vid_info)
{
for (struct mmap_boot *p = mem_info->start; (u32)(p - mem_info->start) < mem_info->size;
p++) {
if (p->hbase || !p->acpi || !p->type)
continue;
u32 size = p->lsize;
if (p->hsize)
size = U32_MAX - p->lbase;
/* printf("Memory region: %x-%x\n", p->lbase, p->lbase + size); */
if (p->type == MEMORY_AVAILABLE) {
physical_set_free(memory_range_around(p->lbase, size));
memory_total += size;
} else if (p->type == MEMORY_DEFECT) {
printf("Defect memory at 0x%x-0x%x!\n", p->lbase, p->lbase + size);
physical_set_used(memory_range_around(p->lbase, size));
} else {
physical_set_used(memory_range_around(p->lbase, size));
}
}
for (u32 i = 0; i < PAGE_KERNEL_COUNT; i++) {
union page_dir_entry *dir_entry = &kernel_dir.entries[i];
dir_entry->bits.present = 1;
dir_entry->bits.writable = 1;
dir_entry->bits.user = 0;
dir_entry->bits.address = (u32)&kernel_tables[i] / PAGE_SIZE;
}
memory_used = 0;
printf("Detected memory: %dKiB (%dMiB)\n", memory_total >> 10, memory_total >> 20);
// Set first MiB 'used' (bootloader(s), VESA tables, memory maps, ...)
physical_set_used(memory_range(0, 0x00100000));
// Map kernel
memory_map_identity(&kernel_dir, kernel_ro_memory_range(), MEMORY_READONLY);
memory_map_identity(&kernel_dir, kernel_rw_memory_range(), MEMORY_NONE);
// Map kernel stack
memory_map_identity(&kernel_dir, memory_range_around(STACK_START - STACK_SIZE, STACK_SIZE),
MEMORY_NONE);
// Map framebuffer
memory_map_identity(&kernel_dir, memory_range_around((u32)vid_info->vbe, 0x1000),
MEMORY_NONE);
fb_map_buffer(virtual_kernel_dir(), vid_info);
// Unmap NULL byte/page
struct memory_range zero = memory_range(0, PAGE_SIZE);
virtual_free(&kernel_dir, zero);
physical_set_used(zero);
memory_switch_dir(&kernel_dir);
paging_enable();
memory_objects = list_new();
}
|