1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
// Hugely inspired by the implementation in skiftOS: MIT License, Copyright (c) 2020 N. Van Bossuyt
// MIT License, Copyright (c) 2021 Marvin Borner
#include <assert.h>
#include <cpu.h>
#include <def.h>
#include <mem.h>
#include <mm.h>
#include <print.h>
/**
* Paging
*/
void paging_disable(void)
{
cr0_set(cr0_get() | 0x7fffffff);
}
void paging_enable(void)
{
cr0_set(cr0_get() | 0x80000000);
}
void paging_switch_dir(u32 dir)
{
assert(dir);
cr3_set(dir);
}
extern void paging_invalidate_tlb(void);
/**
* Physical
*/
static u32 memory_used = 0;
static u32 memory_total = 0;
static u8 memory[PAGE_COUNT * PAGE_COUNT / 8] = { 0 };
#define PHYSICAL_IS_USED(addr) \
(memory[(u32)(addr) / PAGE_SIZE / 8] & (1 << ((u32)(addr) / PAGE_SIZE % 8)))
#define PHYSICAL_SET_USED(addr) \
(memory[(u32)(addr) / PAGE_SIZE / 8] |= (1 << ((u32)(addr) / PAGE_SIZE % 8)))
#define PHYSICAL_SET_FREE(addr) \
(memory[(u32)(addr) / PAGE_SIZE / 8] &= ~(1 << ((u32)(addr) / PAGE_SIZE % 8)))
u8 physical_is_used(u32 addr, u32 n)
{
for (u32 i = 0; i < n; i++) {
if (PHYSICAL_IS_USED(addr + (i * PAGE_SIZE)))
return 1;
}
return 0;
}
void physical_set_used(u32 addr, u32 n)
{
for (u32 i = 0; i < n; i++) {
if (!PHYSICAL_IS_USED(addr + (i * PAGE_SIZE))) {
memory_used += PAGE_SIZE;
PHYSICAL_SET_USED(addr + (i * PAGE_SIZE));
}
}
}
void physical_set_free(u32 addr, u32 n)
{
for (u32 i = 0; i < n; i++) {
if (PHYSICAL_IS_USED(addr + (i * PAGE_SIZE))) {
memory_used -= PAGE_SIZE;
PHYSICAL_SET_FREE(addr + (i * PAGE_SIZE));
}
}
}
u32 physical_alloc(u32 n)
{
for (u32 i = 0; i < (memory_total / PAGE_SIZE); i++) {
u32 addr = i * PAGE_SIZE;
if (!physical_is_used(addr, n)) {
physical_set_used(addr, n);
return addr;
}
}
panic("Out of physical memory!\n");
return 0;
}
void physical_free(u32 addr, u32 n)
{
physical_set_free(addr, n);
}
/**
* Virtual
*/
#define PDI(vaddr) ((vaddr) >> 22)
#define PTI(vaddr) (((vaddr) >> 12) & 0x03ff)
static struct page_dir kernel_dir ALIGNED(PAGE_SIZE) = { 0 };
static struct page_table kernel_tables[256] ALIGNED(PAGE_SIZE) = { 0 };
u8 virtual_present(struct page_dir *dir, u32 vaddr)
{
u32 pdi = PDI(vaddr);
u32 pti = PTI(vaddr);
union page_dir_entry *dir_entry = &dir->entries[pdi];
if (!dir_entry->bits.present)
return 0;
struct page_table *table = (struct page_table *)(dir_entry->bits.address * PAGE_SIZE);
union page_table_entry *table_entry = &table->entries[pti];
if (!table_entry->bits.present)
return 0;
return 1;
}
u32 virtual_to_physical(struct page_dir *dir, u32 vaddr)
{
u32 pdi = PDI(vaddr);
u32 pti = PTI(vaddr);
union page_dir_entry *dir_entry = &dir->entries[pdi];
if (!dir_entry->bits.present)
return 0;
struct page_table *table = (struct page_table *)(dir_entry->bits.address * PAGE_SIZE);
union page_table_entry *table_entry = &table->entries[pti];
if (!table_entry->bits.present)
return 0;
return (table_entry->bits.address * PAGE_SIZE) + (vaddr & (PAGE_SIZE - 1));
}
void memory_alloc_identity(struct page_dir *dir, u32 flags, u32 *out);
void virtual_map(struct page_dir *dir, u32 vaddr, u32 paddr, u32 n, u8 user)
{
for (u32 i = 0; i < n; i++) {
u32 offset = i * PAGE_SIZE;
u32 pdi = PDI(vaddr + offset);
u32 pti = PTI(vaddr + offset);
union page_dir_entry *dir_entry = &dir->entries[pdi];
struct page_table *table =
(struct page_table *)(dir_entry->bits.address * PAGE_SIZE);
union page_table_entry *table_entry = &table->entries[pti];
if (!dir_entry->bits.present) {
memory_alloc_identity(dir, MEMORY_CLEAR, (u32 *)&table);
dir_entry->bits.present = 1;
dir_entry->bits.writable = 1;
dir_entry->bits.user = user;
dir_entry->bits.address = (u32)table >> 12;
}
table_entry->bits.present = 1;
table_entry->bits.writable = 1;
table_entry->bits.user = user;
table_entry->bits.address = (paddr + offset) >> 12;
}
paging_invalidate_tlb();
}
struct memory_range virtual_alloc(struct page_dir *dir, struct memory_range physical_range,
u32 flags)
{
u8 is_user = flags & MEMORY_USER;
u32 vaddr = 0;
u32 size = 0;
for (u32 i = (is_user ? 256 : 1) * PAGE_COUNT;
i < (is_user ? PAGE_COUNT : 256) * PAGE_COUNT; i++) {
u32 addr = i * PAGE_SIZE;
if (!virtual_present(dir, addr)) {
if (size == 0)
vaddr = addr;
size += PAGE_SIZE;
if (size == physical_range.size) {
virtual_map(dir, vaddr, physical_range.base,
physical_range.size / PAGE_SIZE, is_user);
return memory_range(vaddr, size);
}
} else {
size = 0;
}
}
panic("Out of virtual memory!\n");
return memory_range(0, 0);
}
void virtual_free(struct page_dir *dir, struct memory_range virtual_range)
{
for (u32 i = 0; i < virtual_range.size / PAGE_SIZE; i++) {
u32 offset = i * PAGE_SIZE;
u32 pdi = PDI(virtual_range.base + offset);
u32 pti = PTI(virtual_range.base + offset);
union page_dir_entry *dir_entry = &dir->entries[pdi];
struct page_table *table =
(struct page_table *)(dir_entry->bits.address * PAGE_SIZE);
union page_table_entry *table_entry = &table->entries[pti];
if (table_entry->bits.present)
table_entry->uint = 0;
}
paging_invalidate_tlb();
}
/**
* Memory wrapper
*/
extern u32 kernel_start;
extern u32 kernel_end;
struct memory_range memory_range_from_address(u32 base, u32 size)
{
u32 align = PAGE_SIZE - base % PAGE_SIZE;
if (base % PAGE_SIZE == 0) {
align = 0;
}
base += align;
size -= align;
size -= size % PAGE_SIZE;
return memory_range(base, size);
}
struct memory_range memory_range_around_address(u32 base, u32 size)
{
u32 align = base % PAGE_SIZE;
base -= align;
size += align;
size += PAGE_SIZE - size % PAGE_SIZE;
return memory_range(base, size);
}
static struct memory_range kernel_memory_range(void)
{
return memory_range_around_address((u32)&kernel_start,
(u32)&kernel_end - (u32)&kernel_start);
}
void memory_map_identity(struct page_dir *dir, struct memory_range range, u32 flags)
{
assert(PAGE_ALIGNED(range.base) && PAGE_ALIGNED(range.size));
u32 page_count = range.size / PAGE_SIZE;
physical_set_used(range.base, page_count);
virtual_map(dir, range.base, range.base, page_count, flags & MEMORY_USER);
if (flags & MEMORY_CLEAR)
memset((void *)range.base, 0, range.size);
}
void memory_map(struct page_dir *dir, struct memory_range range, u32 flags)
{
assert(PAGE_ALIGNED(range.base) && PAGE_ALIGNED(range.size));
for (u32 i = 0; i < range.size / PAGE_SIZE; i++) {
u32 vaddr = range.base + i * PAGE_SIZE;
if (!virtual_present(dir, vaddr)) {
u32 paddr = physical_alloc(1);
virtual_map(dir, vaddr, paddr, 1, flags & MEMORY_USER);
}
}
if (flags & MEMORY_CLEAR)
memset((void *)range.base, 0, range.size);
}
void memory_alloc_identity(struct page_dir *dir, u32 flags, u32 *out)
{
for (u32 i = 1; i < 256 * PAGE_COUNT; i++) {
u32 addr = i * PAGE_SIZE;
if (!virtual_present(dir, addr) && !physical_is_used(addr, 1)) {
physical_set_used(addr, 1);
virtual_map(dir, addr, addr, 1, flags & MEMORY_USER);
if (flags & MEMORY_CLEAR)
memset((void *)addr, 0, PAGE_SIZE);
*out = addr;
return;
}
}
*out = 0;
panic("Out of memory!\n");
}
void memory_alloc(struct page_dir *dir, u32 size, u32 flags, u32 *out)
{
assert(size && PAGE_ALIGNED(size));
*out = 0;
u32 page_count = size / PAGE_SIZE;
u32 paddr = physical_alloc(page_count);
assert(paddr);
u32 vaddr = virtual_alloc(dir, memory_range(paddr, size), flags).base;
assert(vaddr);
if (flags & MEMORY_CLEAR)
memset((void *)vaddr, 0, page_count * PAGE_SIZE);
*out = vaddr;
}
void memory_free(struct page_dir *dir, struct memory_range range)
{
assert(PAGE_ALIGNED(range.base) && PAGE_ALIGNED(range.size));
for (u32 i = 0; i < range.size / PAGE_SIZE; i++) {
u32 vaddr = range.base + i * PAGE_SIZE;
if (virtual_present(dir, vaddr)) {
physical_free(virtual_to_physical(dir, vaddr), 1);
virtual_free(dir, memory_range(vaddr, PAGE_SIZE));
}
}
}
struct page_dir *memory_dir_create(void)
{
struct page_dir *dir = NULL;
memory_alloc(&kernel_dir, sizeof(*dir), MEMORY_CLEAR, (u32 *)&dir);
memset(dir, 0, sizeof(*dir));
for (u32 i = 0; i < 256; i++) {
union page_dir_entry *entry = &dir->entries[i];
entry->bits.present = 1;
entry->bits.writable = 1;
entry->bits.user = 0;
entry->bits.address = (u32)&kernel_tables[i] / PAGE_SIZE;
}
return dir;
}
void memory_dir_destroy(struct page_dir *dir)
{
for (u32 i = 256; i < PAGE_COUNT; i++) {
union page_dir_entry *dir_entry = &dir->entries[i];
if (dir_entry->bits.present) {
struct page_table *table =
(struct page_table *)(dir_entry->bits.address * PAGE_SIZE);
for (u32 j = 0; j < PAGE_COUNT; j++) {
union page_table_entry *table_entry = &table->entries[j];
if (table_entry->bits.present)
physical_free(table_entry->bits.address * PAGE_SIZE, 1);
}
memory_free(&kernel_dir, memory_range((u32)table, sizeof(*table)));
}
}
memory_free(&kernel_dir, memory_range((u32)dir, sizeof(*dir)));
}
void memory_dir_switch(struct page_dir *dir)
{
paging_switch_dir(virtual_to_physical(&kernel_dir, (u32)dir));
}
struct page_dir *memory_kernel_dir(void)
{
return &kernel_dir;
}
void memory_initialize(struct mem_info *mem_info)
{
for (u32 i = 0; i < 256; i++) {
union page_dir_entry *entry = &kernel_dir.entries[i];
entry->bits.present = 1;
entry->bits.writable = 1;
entry->bits.user = 0;
entry->bits.address = (u32)&kernel_tables[i] / PAGE_SIZE;
}
// Detect memory using E820 memory map
for (struct mmap_boot *p = mem_info->start; (u32)(p - mem_info->start) < mem_info->size;
p++) {
if (p->hbase || !p->acpi || !p->type)
continue;
u32 size = p->lsize;
if (p->hsize)
size = U32_MAX - p->lbase;
/* printf("Memory region: %x-%x\n", p->lbase, p->lbase + size); */
if (p->type == MEMORY_AVAILABLE) {
physical_set_free(p->lbase, size / PAGE_SIZE);
memory_total += size;
} else if (p->type == MEMORY_DEFECT) {
printf("Defect memory at 0x%x-0x%x!\n", p->lbase, p->lbase + size);
}
}
memory_used = 0;
printf("Detected memory: %dKiB (%dMiB)\n", memory_total >> 10, memory_total >> 20);
// Map kernel
memory_map_identity(&kernel_dir, kernel_memory_range(), MEMORY_NONE);
// Map kernel stack
memory_map_identity(&kernel_dir,
memory_range_around_address(STACK_START - STACK_SIZE, STACK_SIZE),
MEMORY_NONE);
// Map kernel heap
memory_map_identity(&kernel_dir, memory_range_around_address(HEAP_START, HEAP_INIT_SIZE),
MEMORY_NONE);
// TODO: Triple fault prevention? Probably bootloader stuff or something
memory_map_identity(&kernel_dir, memory_range_around_address(0x7000, 0x1000), MEMORY_NONE);
// Unmap NULL byte/page
virtual_free(&kernel_dir, memory_range(0, PAGE_SIZE));
physical_set_used(0, 1);
memory_dir_switch(&kernel_dir);
paging_enable();
}
static void page_fault(struct regs *r)
{
// Check error code
const char *type = (r->err_code & 4) ? "present" : "non-present";
const char *operation = (r->err_code & 2) ? "write" : "read";
const char *super = (r->err_code & 1) ? "User" : "Super";
// Check cr2 address
u32 vaddr;
__asm__ volatile("movl %%cr2, %%eax" : "=a"(vaddr));
struct proc *proc = proc_current();
struct page_dir *dir = NULL;
if (proc && proc->page_dir) {
dir = proc->page_dir;
printf("Stack is at %x, entry at %x\n", virtual_to_physical(dir, proc->regs.ebp),
virtual_to_physical(dir, proc->entry));
} else {
dir = &kernel_dir;
}
u32 paddr = virtual_to_physical(dir, vaddr);
// Print!
printf("%s process tried to %s a %s page at [vaddr=%x; paddr=%x]\n", super, operation, type,
vaddr, paddr);
isr_panic(r);
}
void paging_install(struct mem_info *mem_info)
{
memory_initialize(mem_info);
heap_init(HEAP_START);
isr_install_handler(14, page_fault);
}
|