aboutsummaryrefslogtreecommitdiff
path: root/kernel/features/proc.c
blob: ac62195d460b48cb91fd9dc29bd3d2a482253071 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
// MIT License, Copyright (c) 2020 Marvin Borner

#include <assert.h>
#include <boot.h>
#include <cpu.h>
#include <interrupts.h>
#include <list.h>
#include <load.h>
#include <mem.h>
#include <print.h>
#include <proc.h>
#include <str.h>
#include <timer.h>

u32 pid = 0;
u32 quantum = 0;
struct list *proc_list;
struct node *current;

// TODO: Use less memcpy and only copy relevant registers
void scheduler(struct regs *regs)
{
	timer_handler();

	if (quantum == 0) {
		quantum = PROC_QUANTUM;
	} else {
		quantum--;
		return;
	}

	if (current && ((struct proc *)current->data)->state == PROC_RESOLVED) {
		memcpy(regs, &((struct proc *)current->data)->regs_backup, sizeof(struct regs));
		((struct proc *)current->data)->state = PROC_DEFAULT;
	}

	if (current)
		memcpy(&((struct proc *)current->data)->regs, regs, sizeof(struct regs));

	if (current && current->next)
		current = current->next;
	else
		current = proc_list->head;

	while (!current) {
		if (!current->next || !current->next->data) {
			assert(proc_list->head);
			current = proc_list->head;
		} else {
			current = current->next;
		}
	}

	memcpy(regs, &((struct proc *)current->data)->regs, sizeof(struct regs));

	if (regs->cs != GDT_USER_CODE_OFFSET) {
		regs->gs = GDT_USER_DATA_OFFSET;
		regs->fs = GDT_USER_DATA_OFFSET;
		regs->es = GDT_USER_DATA_OFFSET;
		regs->ds = GDT_USER_DATA_OFFSET;
		regs->ss = GDT_USER_DATA_OFFSET;
		regs->cs = GDT_USER_CODE_OFFSET;
		regs->eflags = EFLAGS_ALWAYS | EFLAGS_INTERRUPTS;
	}

	struct proc *proc = current->data;
	if (proc->state == PROC_DEFAULT && proc->events && proc->events->head) {
		struct proc_event *proc_event = proc->events->head->data;
		printf("Event %d for pid %d\n", proc_event->desc->id, proc->pid);
		memcpy(&proc->regs_backup, regs, sizeof(struct regs));
		regs->eip = (u32)proc_event->desc->func;

		quantum = PROC_QUANTUM;
		proc->state = PROC_IN_EVENT;
		regs->useresp += 4;
		((u32 *)regs->useresp)[1] = (u32)proc_event->data; // Huh
		list_remove(proc->events, proc->events->head);
	}

	/* printf("{%d}", ((struct proc *)current->data)->pid); */
}

void proc_print()
{
	struct node *node = proc_list->head;

	printf("\nPROCESSES\n");
	struct proc *proc;
	while (node && (proc = node->data)) {
		printf("Process %d: %s\n", proc->pid, proc->name);
		node = node->next;
	}
	printf("\n");
}

struct proc *proc_current()
{
	return current ? current->data : NULL;
}

void proc_send(struct proc *src, struct proc *dest, enum message_type type, void *data)
{
	assert(src && dest);
	struct proc_message *msg = malloc(sizeof(*msg));
	msg->src = src;
	msg->dest = dest;
	msg->msg = malloc(sizeof(struct message));
	msg->msg->src = src->pid;
	msg->msg->type = type;
	msg->msg->data = data;
	list_add(dest->messages, msg);
}

struct proc_message *proc_receive(struct proc *proc)
{
	if (proc->messages && proc->messages->head) {
		struct proc_message *msg = proc->messages->head->data;
		list_remove(proc->messages, proc->messages->head);
		return msg;
	} else {
		return NULL;
	}
}

void proc_resolve(struct proc *proc)
{
	proc->state = PROC_RESOLVED;
	quantum = 0;
	sti();
	hlt();
}

struct proc *proc_from_pid(u32 pid)
{
	struct node *iterator = proc_list->head;
	do {
		if (((struct proc *)iterator->data)->pid == pid) {
			return iterator->data;
		}
	} while ((iterator = iterator->next) != NULL);
	return NULL;
}

void proc_exit(struct proc *proc, int status)
{
	assert(proc);
	printf("Process %d exited with status %d\n", proc->pid, status);

	struct node *iterator = proc_list->head;
	do {
		if (iterator->data == proc) {
			list_remove(proc_list, iterator);
			break;
		}
	} while ((iterator = iterator->next) != NULL);

	quantum = 0; // TODO: Add quantum to each process struct?
	sti();
	hlt();
}

// TODO: More instant yield
void proc_yield()
{
	quantum = 0;
}

struct proc *proc_make()
{
	struct proc *proc = malloc(sizeof(*proc));
	proc->pid = pid++;
	proc->events = list_new();
	proc->messages = list_new();
	proc->state = PROC_DEFAULT;

	if (current)
		list_add(proc_list, proc);

	return proc;
}

extern void proc_jump_userspace();

u32 _esp, _eip;
void proc_init()
{
	if (proc_list)
		return;

	cli();
	irq_install_handler(0, scheduler);
	proc_list = list_new();

	struct node *new = list_add(proc_list, proc_make());
	bin_load("/init", new->data);

	_eip = ((struct proc *)new->data)->regs.eip;
	_esp = ((struct proc *)new->data)->regs.useresp;

	int argc = 2;
	char **argv = malloc(sizeof(*argv) * (argc + 1));
	argv[0] = "init";
	argv[1] = (char *)boot_passed->vbe;
	argv[2] = NULL;

	((u32 *)_esp)[0] = argc; // First argument (argc)
	((u32 *)_esp)[1] = (u32)argv; // Second argument (argv)

	proc_jump_userspace();
	while (1) {
	};
}