aboutsummaryrefslogtreecommitdiff
path: root/libgui/png.c
blob: ad65eba43666fdd448ae1bca987157bb767dec79 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
/*
uPNG -- derived from LodePNG version 20100808

Copyright (c) 2005-2010 Lode Vandevenne
Copyright (c) 2010 Sean Middleditch
Copyright (c) 2020 Marvin Borner

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
		1. The origin of this software must not be misrepresented; you must not
		claim that you wrote the original software. If you use this software
		in a product, an acknowledgment in the product documentation would be
		appreciated but is not required.
		2. Altered source versions must be plainly marked as such, and must not be
		misrepresented as being the original software.
		3. This notice may not be removed or altered from any source
		distribution.
*/

#include <assert.h>
#include <def.h>
#include <mem.h>
#include <png.h>
#include <sys.h>

#define MAKE_BYTE(b) ((b)&0xFF)
#define MAKE_DWORD(a, b, c, d)                                                                     \
	((MAKE_BYTE(a) << 24) | (MAKE_BYTE(b) << 16) | (MAKE_BYTE(c) << 8) | MAKE_BYTE(d))
#define MAKE_DWORD_PTR(p) MAKE_DWORD((p)[0], (p)[1], (p)[2], (p)[3])

#define CHUNK_IHDR MAKE_DWORD('I', 'H', 'D', 'R')
#define CHUNK_IDAT MAKE_DWORD('I', 'D', 'A', 'T')
#define CHUNK_IEND MAKE_DWORD('I', 'E', 'N', 'D')

#define FIRST_LENGTH_CODE_INDEX 257
#define LAST_LENGTH_CODE_INDEX 285

#define NUM_DEFLATE_CODE_SYMBOLS                                                                   \
	288 // 256 literals, the end code, some length codes, and 2 unused codes
#define NUM_DISTANCE_SYMBOLS 32 // The distance codes have their own symbols, 30 used, 2 unused
#define NUM_CODE_LENGTH_CODES                                                                      \
	19 // The code length codes. 0-15: code lengths, 16: copy previous 3-6 times, 17: 3-10 zeros, 18: 11-138 zeros
#define MAX_SYMBOLS 288 // Largest number of symbols used by any tree type

#define DEFLATE_CODE_BITLEN 15
#define DISTANCE_BITLEN 15
#define CODE_LENGTH_BITLEN 7
#define MAX_BIT_LENGTH 15 // Largest bitlen used by any tree type

#define DEFLATE_CODE_BUFFER_SIZE (NUM_DEFLATE_CODE_SYMBOLS * 2)
#define DISTANCE_BUFFER_SIZE (NUM_DISTANCE_SYMBOLS * 2)
#define CODE_LENGTH_BUFFER_SIZE (NUM_DISTANCE_SYMBOLS * 2)

#define SET_ERROR(png, code)                                                                       \
	do {                                                                                       \
		(png)->error = (code);                                                             \
		(png)->error_line = __LINE__;                                                      \
	} while (0)

#define png_chunk_length(chunk) MAKE_DWORD_PTR(chunk)
#define png_chunk_type(chunk) MAKE_DWORD_PTR((chunk) + 4)
#define png_chunk_critical(chunk) (((chunk)[4] & 32) == 0)

struct huffman_tree {
	u32 *tree2d;
	u32 maxbitlen; // Maximum number of bits a single code can get
	u32 numcodes; // Number of symbols in the alphabet = number of codes
};

// The base lengths represented by codes 257-285
static const u32 LENGTH_BASE[29] = { 3,	 4,  5,	 6,   7,   8,	9,   10,  11, 13,
				     15, 17, 19, 23,  27,  31,	35,  43,  51, 59,
				     67, 83, 99, 115, 131, 163, 195, 227, 258 };

// The extra bits used by codes 257-285 (added to base length)
static const u32 LENGTH_EXTRA[29] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
				      2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 };

// The base backwards distances (the bits of distance codes appear after length codes and use their own huffman tree)
static const u32 DISTANCE_BASE[30] = {
	1,   2,	  3,   4,   5,	 7,    9,    13,   17,	 25,   33,   49,   65,	  97,	 129,
	193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577
};

// The extra bits of backwards distances (added to base)
static const u32 DISTANCE_EXTRA[30] = { 0, 0, 0, 0, 1, 1, 2, 2,	 3,  3,	 4,  4,	 5,  5,	 6,
					6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13 };

// The order in which "code length alphabet code lengths" are stored, out of this the huffman tree of the dynamic huffman tree lengths is generated
static const u32 CLCL[NUM_CODE_LENGTH_CODES] = { 16, 17, 18, 0, 8,  7, 9,  6, 10, 5,
						 11, 4,	 12, 3, 13, 2, 14, 1, 15 };

static const u32 FIXED_DEFLATE_CODE_TREE[NUM_DEFLATE_CODE_SYMBOLS * 2] = {
	289, 370, 290, 307, 546, 291, 561, 292, 293, 300, 294, 297, 295, 296, 0,   1,	2,   3,
	298, 299, 4,   5,   6,	 7,   301, 304, 302, 303, 8,   9,   10,	 11,  305, 306, 12,  13,
	14,  15,  308, 339, 309, 324, 310, 317, 311, 314, 312, 313, 16,	 17,  18,  19,	315, 316,
	20,  21,  22,  23,  318, 321, 319, 320, 24,  25,  26,  27,  322, 323, 28,  29,	30,  31,
	325, 332, 326, 329, 327, 328, 32,  33,	34,  35,  330, 331, 36,	 37,  38,  39,	333, 336,
	334, 335, 40,  41,  42,	 43,  337, 338, 44,  45,  46,  47,  340, 355, 341, 348, 342, 345,
	343, 344, 48,  49,  50,	 51,  346, 347, 52,  53,  54,  55,  349, 352, 350, 351, 56,  57,
	58,  59,  353, 354, 60,	 61,  62,  63,	356, 363, 357, 360, 358, 359, 64,  65,	66,  67,
	361, 362, 68,  69,  70,	 71,  364, 367, 365, 366, 72,  73,  74,	 75,  368, 369, 76,  77,
	78,  79,  371, 434, 372, 403, 373, 388, 374, 381, 375, 378, 376, 377, 80,  81,	82,  83,
	379, 380, 84,  85,  86,	 87,  382, 385, 383, 384, 88,  89,  90,	 91,  386, 387, 92,  93,
	94,  95,  389, 396, 390, 393, 391, 392, 96,  97,  98,  99,  394, 395, 100, 101, 102, 103,
	397, 400, 398, 399, 104, 105, 106, 107, 401, 402, 108, 109, 110, 111, 404, 419, 405, 412,
	406, 409, 407, 408, 112, 113, 114, 115, 410, 411, 116, 117, 118, 119, 413, 416, 414, 415,
	120, 121, 122, 123, 417, 418, 124, 125, 126, 127, 420, 427, 421, 424, 422, 423, 128, 129,
	130, 131, 425, 426, 132, 133, 134, 135, 428, 431, 429, 430, 136, 137, 138, 139, 432, 433,
	140, 141, 142, 143, 435, 483, 436, 452, 568, 437, 438, 445, 439, 442, 440, 441, 144, 145,
	146, 147, 443, 444, 148, 149, 150, 151, 446, 449, 447, 448, 152, 153, 154, 155, 450, 451,
	156, 157, 158, 159, 453, 468, 454, 461, 455, 458, 456, 457, 160, 161, 162, 163, 459, 460,
	164, 165, 166, 167, 462, 465, 463, 464, 168, 169, 170, 171, 466, 467, 172, 173, 174, 175,
	469, 476, 470, 473, 471, 472, 176, 177, 178, 179, 474, 475, 180, 181, 182, 183, 477, 480,
	478, 479, 184, 185, 186, 187, 481, 482, 188, 189, 190, 191, 484, 515, 485, 500, 486, 493,
	487, 490, 488, 489, 192, 193, 194, 195, 491, 492, 196, 197, 198, 199, 494, 497, 495, 496,
	200, 201, 202, 203, 498, 499, 204, 205, 206, 207, 501, 508, 502, 505, 503, 504, 208, 209,
	210, 211, 506, 507, 212, 213, 214, 215, 509, 512, 510, 511, 216, 217, 218, 219, 513, 514,
	220, 221, 222, 223, 516, 531, 517, 524, 518, 521, 519, 520, 224, 225, 226, 227, 522, 523,
	228, 229, 230, 231, 525, 528, 526, 527, 232, 233, 234, 235, 529, 530, 236, 237, 238, 239,
	532, 539, 533, 536, 534, 535, 240, 241, 242, 243, 537, 538, 244, 245, 246, 247, 540, 543,
	541, 542, 248, 249, 250, 251, 544, 545, 252, 253, 254, 255, 547, 554, 548, 551, 549, 550,
	256, 257, 258, 259, 552, 553, 260, 261, 262, 263, 555, 558, 556, 557, 264, 265, 266, 267,
	559, 560, 268, 269, 270, 271, 562, 565, 563, 564, 272, 273, 274, 275, 566, 567, 276, 277,
	278, 279, 569, 572, 570, 571, 280, 281, 282, 283, 573, 574, 284, 285, 286, 287, 0,   0
};

static const u32 FIXED_DISTANCE_TREE[NUM_DISTANCE_SYMBOLS * 2] = {
	33, 48, 34, 41, 35, 38, 36, 37, 0,  1,	2,  3,	39, 40, 4,  5,	6,  7,	42, 45, 43, 44,
	8,  9,	10, 11, 46, 47, 12, 13, 14, 15, 49, 56, 50, 53, 51, 52, 16, 17, 18, 19, 54, 55,
	20, 21, 22, 23, 57, 60, 58, 59, 24, 25, 26, 27, 61, 62, 28, 29, 30, 31, 0,  0
};

static u8 read_bit(u32 *bitpointer, const u8 *bitstream)
{
	u8 result = (u8)((bitstream[(*bitpointer) >> 3] >> ((*bitpointer) & 0x7)) & 1);
	(*bitpointer)++;
	return result;
}

static u32 read_bits(u32 *bitpointer, const u8 *bitstream, u32 nbits)
{
	u32 result = 0, i;
	for (i = 0; i < nbits; i++)
		result |= ((u32)read_bit(bitpointer, bitstream)) << i;
	return result;
}

// The buffer must be numcodes*2 in size!
static void huffman_tree_init(struct huffman_tree *tree, u32 *buffer, u32 numcodes, u32 maxbitlen)
{
	tree->tree2d = buffer;

	tree->numcodes = numcodes;
	tree->maxbitlen = maxbitlen;
}

// Given the code lengths (as stored in the PNG file), generate the tree as defined by deflate. maxbitlen is the maximum bits that a code in the tree can have
static void huffman_tree_create_lengths(struct png *png, struct huffman_tree *tree,
					const u32 *bitlen)
{
	u32 tree1d[MAX_SYMBOLS];
	u32 blcount[MAX_BIT_LENGTH];
	u32 nextcode[MAX_BIT_LENGTH + 1];
	u32 bits, n, i;
	u32 nodefilled = 0; // Up to which node it is filled
	u32 treepos = 0; // Position in the tree (1 of the numcodes columns)

	// Initialize local vectors
	memset(blcount, 0, sizeof(blcount));
	memset(nextcode, 0, sizeof(nextcode));

	// Step 1: Count number of instances of each code length
	for (bits = 0; bits < tree->numcodes; bits++) {
		blcount[bitlen[bits]]++;
	}

	// Step 2: Generate the nextcode values
	for (bits = 1; bits <= tree->maxbitlen; bits++) {
		nextcode[bits] = (nextcode[bits - 1] + blcount[bits - 1]) << 1;
	}

	// Step 3: Generate all the codes
	for (n = 0; n < tree->numcodes; n++) {
		if (bitlen[n] != 0) {
			tree1d[n] = nextcode[bitlen[n]]++;
		}
	}

	/* Convert tree1d[] to tree2d[][]. In the 2D array, a value of 32767 means uninited, a value >= numcodes is an address to another bit, a value < numcodes is a code. The 2 rows are the 2 possible bit values (0 or 1), there are as many columns as codes - 1.
	   A good huffmann tree has N * 2 - 1 nodes, of which N - 1 are internal nodes. Here, the internal nodes are stored (what their 0 and 1 option point to). There is only memory for such good tree currently, if there are more nodes (due to too long length codes), error 55 will happen */
	for (n = 0; n < tree->numcodes * 2; n++) {
		tree->tree2d[n] = 32767; // 32767 here means the tree2d isn't filled there yet
	}

	for (n = 0; n < tree->numcodes; n++) { // The codes
		for (i = 0; i < bitlen[n]; i++) { // The bits for this code
			u8 bit = (u8)((tree1d[n] >> (bitlen[n] - i - 1)) & 1);
			// Check if oversubscribed
			if (treepos > tree->numcodes - 2) {
				SET_ERROR(png, PNG_EMALFORMED);
				return;
			}

			if (tree->tree2d[2 * treepos + bit] == 32767) { // Not yet filled in
				if (i + 1 == bitlen[n]) { // Last bit
					// Put the current code in it
					tree->tree2d[2 * treepos + bit] = n;
					treepos = 0;
				} else { // Put address of the next step in here, first that address has to be found of course (it's just nodefilled + 1)...
					nodefilled++;
					tree->tree2d[2 * treepos + bit] =
						nodefilled +
						tree->numcodes; // Addresses encoded with numcodes added to it
					treepos = nodefilled;
				}
			} else {
				treepos = tree->tree2d[2 * treepos + bit] - tree->numcodes;
			}
		}
	}

	for (n = 0; n < tree->numcodes * 2; n++) {
		if (tree->tree2d[n] == 32767) {
			tree->tree2d[n] = 0; // Remove possible remaining 32767's
		}
	}
}

static u32 huffman_decode_symbol(struct png *png, const u8 *in, u32 *bp,
				 const struct huffman_tree *codetree, u32 inlength)
{
	u32 treepos = 0, ct;
	u8 bit;
	for (;;) {
		// Error: end of input memory reached without endcode
		if (((*bp) & 0x07) == 0 && ((*bp) >> 3) > inlength) {
			SET_ERROR(png, PNG_EMALFORMED);
			return 0;
		}

		bit = read_bit(bp, in);

		ct = codetree->tree2d[(treepos << 1) | bit];
		if (ct < codetree->numcodes) {
			return ct;
		}

		treepos = ct - codetree->numcodes;
		if (treepos >= codetree->numcodes) {
			SET_ERROR(png, PNG_EMALFORMED);
			return 0;
		}
	}
}

// Get the tree of a deflated block with dynamic tree, the tree itself is also Huffman compressed with a known tree
static void get_tree_inflate_dynamic(struct png *png, struct huffman_tree *codetree,
				     struct huffman_tree *codetreeD,
				     struct huffman_tree *codelengthcodetree, const u8 *in, u32 *bp,
				     u32 inlength)
{
	u32 codelengthcode[NUM_CODE_LENGTH_CODES];
	u32 bitlen[NUM_DEFLATE_CODE_SYMBOLS];
	u32 bitlenD[NUM_DISTANCE_SYMBOLS];
	u32 n, hlit, hdist, hclen, i;

	// Make sure that length values that aren't filled in will be 0, or a wrong tree will be generated
	if ((*bp) >> 3 >= inlength - 2) {
		SET_ERROR(png, PNG_EMALFORMED);
		return;
	}

	// Clear bitlen arrays
	memset(bitlen, 0, sizeof(bitlen));
	memset(bitlenD, 0, sizeof(bitlenD));

	// Number of literal/length codes + 257. Unlike the spec, the value 257 is added to it here already
	hlit = read_bits(bp, in, 5) + 257;

	// Number of distance codes. Unlike the spec, the value 1 is added to it here already
	hdist = read_bits(bp, in, 5) + 1;

	// Number of code length codes. Unlike the spec, the value 4 is added to it here already
	hclen = read_bits(bp, in, 4) + 4;

	for (i = 0; i < NUM_CODE_LENGTH_CODES; i++) {
		if (i < hclen) {
			codelengthcode[CLCL[i]] = read_bits(bp, in, 3);
		} else {
			codelengthcode[CLCL[i]] = 0;
		}
	}

	huffman_tree_create_lengths(png, codelengthcodetree, codelengthcode);

	if (png->error != PNG_EOK)
		return;

	// Use this tree to read the lengths for the tree that this function will return
	i = 0;
	while (i < hlit + hdist) {
		u32 code = huffman_decode_symbol(png, in, bp, codelengthcodetree, inlength);
		if (png->error != PNG_EOK) {
			break;
		}

		if (code <= 15) { // Length code
			if (i < hlit) {
				bitlen[i] = code;
			} else {
				bitlenD[i - hlit] = code;
			}
			i++;
		} else if (code == 16) { // Repeat previous
			u32 replength = 3; // Read in the 2 bits that indicate repeat length (3-6)
			u32 value; // Set value to the previous code

			if ((*bp) >> 3 >= inlength) {
				SET_ERROR(png, PNG_EMALFORMED);
				break;
			}
			// Error, bit pointer jumps past memory
			replength += read_bits(bp, in, 2);

			if ((i - 1) < hlit) {
				value = bitlen[i - 1];
			} else {
				value = bitlenD[i - hlit - 1];
			}

			// Repeat this value in the next lengths
			for (n = 0; n < replength; n++) {
				// i is larger than the amount of codes
				if (i >= hlit + hdist) {
					SET_ERROR(png, PNG_EMALFORMED);
					break;
				}

				if (i < hlit) {
					bitlen[i] = value;
				} else {
					bitlenD[i - hlit] = value;
				}
				i++;
			}
		} else if (code == 17) { // Repeat "0" 3-10 times
			u32 replength = 3; // Read in the bits that indicate repeat length
			if ((*bp) >> 3 >= inlength) {
				SET_ERROR(png, PNG_EMALFORMED);
				break;
			}

			// Error, bit pointer jumps past memory
			replength += read_bits(bp, in, 3);

			// Repeat this value in the next lengths
			for (n = 0; n < replength; n++) {
				// Error: i is larger than the amount of codes
				if (i >= hlit + hdist) {
					SET_ERROR(png, PNG_EMALFORMED);
					break;
				}

				if (i < hlit) {
					bitlen[i] = 0;
				} else {
					bitlenD[i - hlit] = 0;
				}
				i++;
			}
		} else if (code == 18) { // Repeat "0" 11-138 times
			u32 replength = 11; // Read in the bits that indicate repeat length
			// Error, bit pointer jumps past memory
			if ((*bp) >> 3 >= inlength) {
				SET_ERROR(png, PNG_EMALFORMED);
				break;
			}

			replength += read_bits(bp, in, 7);

			// Repeat this value in the next lengths
			for (n = 0; n < replength; n++) {
				// i is larger than the amount of codes
				if (i >= hlit + hdist) {
					SET_ERROR(png, PNG_EMALFORMED);
					break;
				}
				if (i < hlit)
					bitlen[i] = 0;
				else
					bitlenD[i - hlit] = 0;
				i++;
			}
		} else {
			// Somehow an unexisting code appeared
			SET_ERROR(png, PNG_EMALFORMED);
			break;
		}
	}

	if (png->error == PNG_EOK && bitlen[256] == 0) {
		SET_ERROR(png, PNG_EMALFORMED);
	}

	// Generate code trees
	if (png->error == PNG_EOK) {
		huffman_tree_create_lengths(png, codetree, bitlen);
	}
	if (png->error == PNG_EOK) {
		huffman_tree_create_lengths(png, codetreeD, bitlenD);
	}
}

// Inflate a block with dynamic of fixed Huffman tree
static void inflate_huffman(struct png *png, u8 *out, u32 outsize, const u8 *in, u32 *bp, u32 *pos,
			    u32 inlength, u32 btype)
{
	u32 codetree_buffer[DEFLATE_CODE_BUFFER_SIZE];
	u32 codetreeD_buffer[DISTANCE_BUFFER_SIZE];
	u32 done = 0;

	struct huffman_tree codetree;
	struct huffman_tree codetreeD;

	if (btype == 1) {
		// Fixed trees
		huffman_tree_init(&codetree, (u32 *)FIXED_DEFLATE_CODE_TREE,
				  NUM_DEFLATE_CODE_SYMBOLS, DEFLATE_CODE_BITLEN);
		huffman_tree_init(&codetreeD, (u32 *)FIXED_DISTANCE_TREE, NUM_DISTANCE_SYMBOLS,
				  DISTANCE_BITLEN);
	} else if (btype == 2) {
		// Dynamic trees
		u32 codelengthcodetree_buffer[CODE_LENGTH_BUFFER_SIZE];
		struct huffman_tree codelengthcodetree;

		huffman_tree_init(&codetree, codetree_buffer, NUM_DEFLATE_CODE_SYMBOLS,
				  DEFLATE_CODE_BITLEN);
		huffman_tree_init(&codetreeD, codetreeD_buffer, NUM_DISTANCE_SYMBOLS,
				  DISTANCE_BITLEN);
		huffman_tree_init(&codelengthcodetree, codelengthcodetree_buffer,
				  NUM_CODE_LENGTH_CODES, CODE_LENGTH_BITLEN);
		get_tree_inflate_dynamic(png, &codetree, &codetreeD, &codelengthcodetree, in, bp,
					 inlength);
	}

	while (done == 0) {
		u32 code = huffman_decode_symbol(png, in, bp, &codetree, inlength);
		if (png->error != PNG_EOK) {
			return;
		}

		if (code == 256) {
			// End code
			done = 1;
		} else if (code <= 255) {
			// Literal symbol
			if ((*pos) >= outsize) {
				SET_ERROR(png, PNG_EMALFORMED);
				return;
			}

			// Store output
			out[(*pos)++] = (u8)(code);
		} else if (code >= FIRST_LENGTH_CODE_INDEX && code <= LAST_LENGTH_CODE_INDEX) {
			// Part 1: Get length base
			u32 length = LENGTH_BASE[code - FIRST_LENGTH_CODE_INDEX];
			u32 codeD, distance, numextrabitsD;
			u32 start, forward, backward, numextrabits;

			// Part 2: Get extra bits and add the value of that to length
			numextrabits = LENGTH_EXTRA[code - FIRST_LENGTH_CODE_INDEX];

			// Error, bit pointer will jump past memory
			if (((*bp) >> 3) >= inlength) {
				SET_ERROR(png, PNG_EMALFORMED);
				return;
			}
			length += read_bits(bp, in, numextrabits);

			// Part 3: Get distance code
			codeD = huffman_decode_symbol(png, in, bp, &codetreeD, inlength);
			if (png->error != PNG_EOK) {
				return;
			}

			// Invalid distance code (30-31 are never used)
			if (codeD > 29) {
				SET_ERROR(png, PNG_EMALFORMED);
				return;
			}

			distance = DISTANCE_BASE[codeD];

			// Part 4: Get extra bits from distance
			numextrabitsD = DISTANCE_EXTRA[codeD];

			// Error, bit pointer will jump past memory
			if (((*bp) >> 3) >= inlength) {
				SET_ERROR(png, PNG_EMALFORMED);
				return;
			}

			distance += read_bits(bp, in, numextrabitsD);

			// Part 5: Fill in all the out[n] values based on the length and dist
			start = (*pos);
			backward = start - distance;

			if ((*pos) + length >= outsize) {
				SET_ERROR(png, PNG_EMALFORMED);
				return;
			}

			for (forward = 0; forward < length; forward++) {
				out[(*pos)++] = out[backward];
				backward++;

				if (backward >= start) {
					backward = start - distance;
				}
			}
		}
	}
}

static void inflate_uncompressed(struct png *png, u8 *out, u32 outsize, const u8 *in, u32 *bp,
				 u32 *pos, u32 inlength)
{
	u32 p;
	u32 len, nlen, n;

	// Go to first boundary of byte
	while (((*bp) & 0x7) != 0) {
		(*bp)++;
	}
	p = (*bp) / 8; //byte position

	// Read len (2 bytes) and nlen (2 bytes)
	if (p >= inlength - 4) {
		SET_ERROR(png, PNG_EMALFORMED);
		return;
	}

	len = in[p] + 256 * in[p + 1];
	p += 2;
	nlen = in[p] + 256 * in[p + 1];
	p += 2;

	// Check if 16-bit nlen is really the one's complement of len
	if (len + nlen != 65535) {
		SET_ERROR(png, PNG_EMALFORMED);
		return;
	}

	if ((*pos) + len >= outsize) {
		SET_ERROR(png, PNG_EMALFORMED);
		return;
	}

	// Read the literal data: len bytes are now stored in the out buffer
	if (p + len > inlength) {
		SET_ERROR(png, PNG_EMALFORMED);
		return;
	}

	for (n = 0; n < len; n++) {
		out[(*pos)++] = in[p++];
	}

	(*bp) = p * 8;
}

// Inflate the deflated data (cfr. deflate spec)
static enum png_error uz_inflate_data(struct png *png, u8 *out, u32 outsize, const u8 *in,
				      u32 insize, u32 inpos)
{
	u32 bp = 0; // Bit pointer in the in buffer
	u32 pos = 0; // Byte position in the out buffer

	u32 done = 0;

	while (done == 0) {
		u32 btype;

		// Ensure next bit doesn't point past the end of the buffer
		if ((bp >> 3) >= insize) {
			SET_ERROR(png, PNG_EMALFORMED);
			return png->error;
		}

		// Read block control bits
		done = read_bit(&bp, &in[inpos]);
		btype = read_bit(&bp, &in[inpos]) | (read_bit(&bp, &in[inpos]) << 1);

		// Process control type appropriately
		if (btype == 3) {
			SET_ERROR(png, PNG_EMALFORMED);
			return png->error;
		} else if (btype == 0) {
			// No compression
			inflate_uncompressed(png, out, outsize, &in[inpos], &bp, &pos, insize);
		} else {
			// Compression, btype 01 or 10
			inflate_huffman(png, out, outsize, &in[inpos], &bp, &pos, insize, btype);
		}

		// Stop if an error has occured
		if (png->error != PNG_EOK) {
			return png->error;
		}
	}

	return png->error;
}

static enum png_error uz_inflate(struct png *png, u8 *out, u32 outsize, const u8 *in, u32 insize)
{
	// Two bytes for the zlib data header
	if (insize < 2) {
		SET_ERROR(png, PNG_EMALFORMED);
		return png->error;
	}

	// 256 * in[0] + in[1] must be a multiple of 31, the FCHECK value is supposed to be made that way
	if ((in[0] * 256 + in[1]) % 31 != 0) {
		SET_ERROR(png, PNG_EMALFORMED);
		return png->error;
	}

	// Error: Only compression method 8: Inflate with sliding window of 32k is supported by the PNG spec
	if ((in[0] & 15) != 8 || ((in[0] >> 4) & 15) > 7) {
		SET_ERROR(png, PNG_EMALFORMED);
		return png->error;
	}

	// The specification of PNG says about the zlib stream: "The additional flags shall not specify a preset dictionary."
	if (((in[1] >> 5) & 1) != 0) {
		SET_ERROR(png, PNG_EMALFORMED);
		return png->error;
	}

	// Create output buffer
	uz_inflate_data(png, out, outsize, in, insize, 2);

	return png->error;
}

// Paeth predictor, used by PNG filter type 4
static int paeth_predictor(int a, int b, int c)
{
	int p = a + b - c;
	int pa = p > a ? p - a : a - p;
	int pb = p > b ? p - b : b - p;
	int pc = p > c ? p - c : c - p;

	if (pa <= pb && pa <= pc)
		return a;
	else if (pb <= pc)
		return b;
	else
		return c;
}

static void unfilter_scanline(struct png *png, u8 *recon, const u8 *scanline, const u8 *precon,
			      u32 bytewidth, u8 filterType, u32 length)
{
	/*
	   For PNG filter method 0
	   Unfilter a PNG image scanline by scanline. when the pixels are smaller than 1 byte, the filter works byte per byte (bytewidth = 1)
	   precon is the previous unfiltered scanline, recon the result, scanline the current one
	   The incoming scanlines do NOT include the filtertype byte, that one is given in the parameter filterType instead
	   recon and scanline MAY be the same memory address! precon must be disjoint.
	*/

	u32 i;
	switch (filterType) {
	case 0:
		for (i = 0; i < length; i++)
			recon[i] = scanline[i];
		break;
	case 1:
		for (i = 0; i < bytewidth; i++)
			recon[i] = scanline[i];
		for (i = bytewidth; i < length; i++)
			recon[i] = scanline[i] + recon[i - bytewidth];
		break;
	case 2:
		if (precon)
			for (i = 0; i < length; i++)
				recon[i] = scanline[i] + precon[i];
		else
			for (i = 0; i < length; i++)
				recon[i] = scanline[i];
		break;
	case 3:
		if (precon) {
			for (i = 0; i < bytewidth; i++)
				recon[i] = scanline[i] + precon[i] / 2;
			for (i = bytewidth; i < length; i++)
				recon[i] = scanline[i] + ((recon[i - bytewidth] + precon[i]) / 2);
		} else {
			for (i = 0; i < bytewidth; i++)
				recon[i] = scanline[i];
			for (i = bytewidth; i < length; i++)
				recon[i] = scanline[i] + recon[i - bytewidth] / 2;
		}
		break;
	case 4:
		if (precon) {
			for (i = 0; i < bytewidth; i++)
				recon[i] = (u8)(scanline[i] + paeth_predictor(0, precon[i], 0));
			for (i = bytewidth; i < length; i++)
				recon[i] = (u8)(scanline[i] +
						paeth_predictor(recon[i - bytewidth], precon[i],
								precon[i - bytewidth]));
		} else {
			for (i = 0; i < bytewidth; i++)
				recon[i] = scanline[i];
			for (i = bytewidth; i < length; i++)
				recon[i] = (u8)(scanline[i] +
						paeth_predictor(recon[i - bytewidth], 0, 0));
		}
		break;
	default:
		SET_ERROR(png, PNG_EMALFORMED);
		break;
	}
}

static void unfilter(struct png *png, u8 *out, const u8 *in, u32 w, u32 h, u32 bpp)
{
	/*
	   For PNG filter method 0
	   This function unfilters a single image (e.g. without interlacing this is called once, with Adam7 it's called 7 times)
	   out must have enough bytes allocated already, in must have the scanlines + 1 filtertype byte per scanline
	   w and h are image dimensions or dimensions of reduced image, bpp is bpp per pixel
	   in and out are allowed to be the same memory address!
	*/

	u32 y;
	u8 *prevline = 0;

	// bytewidth is used for filtering, is 1 when bpp < 8, number of bytes per pixel otherwise
	u32 bytewidth = (bpp + 7) / 8;
	u32 linebytes = (w * bpp + 7) / 8;

	for (y = 0; y < h; y++) {
		u32 outindex = linebytes * y;
		u32 inindex = (1 + linebytes) * y;
		u8 filterType = in[inindex];

		unfilter_scanline(png, &out[outindex], &in[inindex + 1], prevline, bytewidth,
				  filterType, linebytes);
		if (png->error != PNG_EOK) {
			return;
		}

		prevline = &out[outindex];
	}
}

static void remove_padding_bits(u8 *out, const u8 *in, u32 olinebits, u32 ilinebits, u32 h)
{
	/*
	   After filtering there are still padding bpp if scanlines have non multiple of 8 bit amounts. They need to be removed (except at last scanline of (Adam7-reduced) image) before working with pure image buffers for the Adam7 code, the color convert code and the output to the user.
	   in and out are allowed to be the same buffer, in may also be higher but still overlapping; in must have >= ilinebits*h bpp, out must have >= olinebits*h bpp, olinebits must be <= ilinebits
	   Also used to move bpp after earlier such operations happened, e.g. in a sequence of reduced images from Adam7
	   Only useful if (ilinebits - olinebits) is a value in the range 1..7
	*/

	u32 y;
	u32 diff = ilinebits - olinebits;
	u32 obp = 0, ibp = 0; // Bit pointers
	for (y = 0; y < h; y++) {
		u32 x;
		for (x = 0; x < olinebits; x++) {
			u8 bit = (u8)((in[(ibp) >> 3] >> (7 - ((ibp)&0x7))) & 1);
			ibp++;

			if (bit == 0)
				out[(obp) >> 3] &= (u8)(~(1 << (7 - ((obp)&0x7))));
			else
				out[(obp) >> 3] |= (1 << (7 - ((obp)&0x7)));
			++obp;
		}
		ibp += diff;
	}
}

// out buffer must be big enough to contain full image, and it must contain the full decompressed data from the IDAT chunks
static void post_process_scanlines(struct png *png, u8 *out, u8 *in, const struct png *info_png)
{
	u32 bpp = png_get_bpp(info_png);
	u32 w = info_png->width;
	u32 h = info_png->height;

	if (bpp == 0) {
		SET_ERROR(png, PNG_EMALFORMED);
		return;
	}

	if (bpp < 8 && w * bpp != ((w * bpp + 7) / 8) * 8) {
		unfilter(png, in, in, w, h, bpp);
		if (png->error != PNG_EOK) {
			return;
		}
		remove_padding_bits(out, in, w * bpp, ((w * bpp + 7) / 8) * 8, h);
	} else {
		unfilter(png, out, in, w, h, bpp);
	}
}

static enum png_format determine_format(struct png *png)
{
	switch (png->color_type) {
	case PNG_LUM:
		switch (png->color_depth) {
		case 1:
			return PNG_LUMINANCE1;
		case 2:
			return PNG_LUMINANCE2;
		case 4:
			return PNG_LUMINANCE4;
		case 8:
			return PNG_LUMINANCE8;
		default:
			return PNG_BADFORMAT;
		}
	case PNG_RGB:
		switch (png->color_depth) {
		case 8:
			return PNG_RGB8;
		case 16:
			return PNG_RGB16;
		default:
			return PNG_BADFORMAT;
		}
	case PNG_LUMA:
		switch (png->color_depth) {
		case 1:
			return PNG_LUMINANCE_ALPHA1;
		case 2:
			return PNG_LUMINANCE_ALPHA2;
		case 4:
			return PNG_LUMINANCE_ALPHA4;
		case 8:
			return PNG_LUMINANCE_ALPHA8;
		default:
			return PNG_BADFORMAT;
		}
	case PNG_RGBA:
		switch (png->color_depth) {
		case 8:
			return PNG_RGBA8;
		case 16:
			return PNG_RGBA16;
		default:
			return PNG_BADFORMAT;
		}
	default:
		return PNG_BADFORMAT;
	}
}

static void png_free_source(struct png *png)
{
	if (png->source.owning != 0) {
		free((void *)png->source.buffer);
	}

	png->source.buffer = NULL;
	png->source.size = 0;
	png->source.owning = 0;
}

// Read the information from the header and store it in the png_info
enum png_error png_header(struct png *png)
{
	if (png->error != PNG_EOK) {
		return png->error;
	}

	if (png->state != PNG_NEW) {
		return png->error;
	}

	// Minimum length of a valid PNG file is 29 bytes
	// FIXME: Verify this against the specification, or against the actual code below
	if (png->source.size < 29) {
		SET_ERROR(png, PNG_ENOTPNG);
		return png->error;
	}

	// Check that PNG header matches expected value
	if (png->source.buffer[0] != 137 || png->source.buffer[1] != 80 ||
	    png->source.buffer[2] != 78 || png->source.buffer[3] != 71 ||
	    png->source.buffer[4] != 13 || png->source.buffer[5] != 10 ||
	    png->source.buffer[6] != 26 || png->source.buffer[7] != 10) {
		SET_ERROR(png, PNG_ENOTPNG);
		return png->error;
	}

	// Check that the first chunk is the IHDR chunk
	if (MAKE_DWORD_PTR(png->source.buffer + 12) != CHUNK_IHDR) {
		SET_ERROR(png, PNG_EMALFORMED);
		return png->error;
	}

	// Read the values given in the header
	png->width = MAKE_DWORD_PTR(png->source.buffer + 16);
	png->height = MAKE_DWORD_PTR(png->source.buffer + 20);
	png->color_depth = png->source.buffer[24];
	png->color_type = (enum png_color)png->source.buffer[25];

	// Determine the color format
	png->format = determine_format(png);
	if (png->format == PNG_BADFORMAT) {
		SET_ERROR(png, PNG_EUNFORMAT);
		return png->error;
	}

	// Check that the compression method (byte 27) is 0 (only allowed value in spec)
	if (png->source.buffer[26] != 0) {
		SET_ERROR(png, PNG_EMALFORMED);
		return png->error;
	}

	// Check that the compression method (byte 27) is 0 (only allowed value in spec)
	if (png->source.buffer[27] != 0) {
		SET_ERROR(png, PNG_EMALFORMED);
		return png->error;
	}

	// Check that the compression method (byte 27) is 0 (spec allows 1, but png does not support it)
	if (png->source.buffer[28] != 0) {
		SET_ERROR(png, PNG_EUNINTERLACED);
		return png->error;
	}

	png->state = PNG_HEADER;
	return png->error;
}

// Read a PNG, the result will be in the same color type as the PNG (hence "generic")
enum png_error png_decode(struct png *png)
{
	const u8 *chunk;
	u8 *compressed;
	u8 *inflated;
	u32 compressed_size = 0, compressed_index = 0;
	u32 inflated_size;
	enum png_error error;

	if (png->error != PNG_EOK) {
		return png->error;
	}

	// Parse the main header, if necessary
	png_header(png);
	if (png->error != PNG_EOK) {
		return png->error;
	}

	// Not a PNG header -> crash
	if (png->state != PNG_HEADER) {
		return png->error;
	}

	// Release old result, if any
	if (png->buffer != 0) {
		free(png->buffer);
		png->buffer = 0;
		png->size = 0;
	}

	// First byte of the first chunk after the header
	chunk = png->source.buffer + 33;

	// Scan through the chunks, finding the size of all IDAT chunks, and also verify general compliance
	while (chunk < png->source.buffer + png->source.size) {
		u32 length;

		// Make sure chunk header is not larger than the total compressed
		if ((u32)(chunk - png->source.buffer + 12) > png->source.size) {
			SET_ERROR(png, PNG_EMALFORMED);
			return png->error;
		}

		// Get length; sanity check it
		length = png_chunk_length(chunk);
		if (length > S32_MAX) {
			SET_ERROR(png, PNG_EMALFORMED);
			return png->error;
		}

		// Make sure chunk header+paylaod is not larger than the total compressed
		if ((u32)(chunk - png->source.buffer + length + 12) > png->source.size) {
			SET_ERROR(png, PNG_EMALFORMED);
			return png->error;
		}

		// Parse chunks
		if (png_chunk_type(chunk) == CHUNK_IDAT) {
			compressed_size += length;
		} else if (png_chunk_type(chunk) == CHUNK_IEND) {
			break;
		} else if (png_chunk_critical(chunk)) {
			SET_ERROR(png, PNG_EUNSUPPORTED);
			return png->error;
		}

		chunk += png_chunk_length(chunk) + 12;
	}

	// Allocate enough space for the (compressed and filtered) image data
	compressed = (u8 *)malloc(compressed_size);
	if (compressed == NULL) {
		SET_ERROR(png, PNG_ENOMEM);
		return png->error;
	}

	// Scan through the chunks again, this time copying the values into the compressed buffer.There's no reason to validate anything a second time
	chunk = png->source.buffer + 33;
	while (chunk < png->source.buffer + png->source.size) {
		u32 length;
		const u8 *data; // The data in the chunk

		length = png_chunk_length(chunk);
		data = chunk + 8;

		// Parse chunks
		if (png_chunk_type(chunk) == CHUNK_IDAT) {
			memcpy(compressed + compressed_index, data, length);
			compressed_index += length;
		} else if (png_chunk_type(chunk) == CHUNK_IEND) {
			break;
		}

		chunk += png_chunk_length(chunk) + 12;
	}

	// Allocate space to store inflated (but still filtered) data
	inflated_size = ((png->width * (png->height * png_get_bpp(png) + 7)) / 8) + png->height;
	inflated = (u8 *)malloc(inflated_size);
	if (inflated == NULL) {
		free(compressed);
		SET_ERROR(png, PNG_ENOMEM);
		return png->error;
	}

	// Decompress image data
	error = uz_inflate(png, inflated, inflated_size, compressed, compressed_size);
	if (error != PNG_EOK) {
		free(compressed);
		free(inflated);
		return png->error;
	}

	// Free the compressed compressed data
	free(compressed);

	// Allocate final image buffer
	png->size = (png->height * png->width * png_get_bpp(png) + 7) / 8;
	png->buffer = (u8 *)malloc(png->size);
	if (png->buffer == NULL) {
		free(inflated);
		png->size = 0;
		SET_ERROR(png, PNG_ENOMEM);
		return png->error;
	}

	// Unfilter scanlines
	post_process_scanlines(png, png->buffer, inflated, png);
	free(inflated);

	if (png->error != PNG_EOK) {
		free(png->buffer);
		png->buffer = NULL;
		png->size = 0;
	} else {
		png->state = PNG_DECODED;
	}

	// Done!
	png_free_source(png);

	return png->error;
}

static struct png *png_new(void)
{
	struct png *png;

	png = (struct png *)malloc(sizeof(struct png));
	if (png == NULL) {
		return NULL;
	}

	png->buffer = NULL;
	png->size = 0;

	png->width = png->height = 0;

	png->color_type = PNG_RGBA;
	png->color_depth = 8;
	png->format = PNG_RGBA8;

	png->state = PNG_NEW;

	png->error = PNG_EOK;
	png->error_line = 0;

	png->source.buffer = NULL;
	png->source.size = 0;
	png->source.owning = 0;

	return png;
}

void png_free(struct png *png)
{
	// Deallocate image buffer
	if (png->buffer)
		free(png->buffer);

	// Deallocate source buffer, if necessary
	png_free_source(png);

	// Deallocate struct itself
	free(png);
}

u32 png_get_bpp(const struct png *png)
{
	int depth = 0;
	switch (png->color_type) {
	case PNG_LUM:
		depth = 1;
		break;
	case PNG_RGB:
		depth = 3;
		break;
	case PNG_LUMA:
		depth = 2;
		break;
	case PNG_RGBA:
		depth = 4;
		break;
	default:
		depth = 0;
		break;
	}

	return png->color_depth * depth;
}

struct bmp *png_load(const char *path)
{
	struct png *png = png_new();
	if (!png)
		return NULL;

	void *buf = sread(path);
	if (!buf) {
		SET_ERROR(png, PNG_ENOTFOUND);
		png_free(png);
		return NULL;
	}

	struct stat s = { 0 };
	stat(path, &s);
	png->source.buffer = buf;
	png->source.size = s.size;
	png->source.owning = 1;

	png_decode(png);
	assert(png->error == PNG_EOK);

	struct bmp *bmp = malloc(sizeof(*bmp));
	bmp->width = png->width;
	bmp->height = png->height;
	bmp->data = png->buffer;
	bmp->bpp = png_get_bpp(png);
	bmp->pitch = png->width * (bmp->bpp >> 3);

	png_free(png);

	return bmp;
}