blob: b84958bf6598644b3b043abe1fb04ad787fa433a (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
// MIT License, Copyright (c) 2020 Marvin Borner
#include <math.h>
f64 pow(f64 base, f64 exp)
{
f64 out;
__asm__ volatile("fyl2x;"
"fld %%st;"
"frndint;"
"fsub %%st,%%st(1);"
"fxch;"
"fchs;"
"f2xm1;"
"fld1;"
"faddp;"
"fxch;"
"fld1;"
"fscale;"
"fstp %%st(1);"
"fmulp;"
: "=t"(out)
: "0"(base), "u"(exp)
: "st(1)");
return out;
}
// TODO: More efficient sqrt?
f64 sqrt(f64 num)
{
return pow(num, .5);
}
/**
* Trigonometric functions
*/
f32 sinf(f32 angle)
{
f32 ret = 0.0;
__asm__ volatile("fsin" : "=t"(ret) : "0"(angle));
return ret;
}
f64 sin(f64 angle)
{
f64 ret = 0.0;
__asm__ volatile("fsin" : "=t"(ret) : "0"(angle));
return ret;
}
f32 cosf(f32 angle)
{
return sinf(angle + (f32)M_PI_2);
}
f64 cos(f64 angle)
{
return sin(angle + (f64)M_PI_2);
}
f32 tanf(f32 angle)
{
return (f32)tan(angle);
}
f64 tan(f64 angle)
{
f64 ret = 0.0, one;
__asm__ volatile("fptan" : "=t"(one), "=u"(ret) : "0"(angle));
return ret;
}
|