1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
#include <kernel/io/io.h>
#include <kernel/lib/lib.h>
#include <kernel/timer/timer.h>
#include <stddef.h>
uint32_t *SMI_CMD;
char ACPI_ENABLE;
char ACPI_DISABLE;
uint32_t *PM1a_CNT;
uint32_t *PM1b_CNT;
int SLP_TYPa;
int SLP_TYPb;
int SLP_EN;
int SCI_EN;
char PM1_CNT_LEN;
struct RSDPtr {
char Signature[8];
char CheckSum;
char OemID[6];
char Revision;
uint32_t *RsdtAddress;
};
struct FACP {
char Signature[4];
uint32_t Length;
char unneded1[40 - 8];
uint32_t *DSDT;
char unneded2[48 - 44];
uint32_t *SMI_CMD;
char ACPI_ENABLE;
char ACPI_DISABLE;
char unneded3[64 - 54];
uint32_t *PM1a_CNT_BLK;
uint32_t *PM1b_CNT_BLK;
char unneded4[89 - 72];
char PM1_CNT_LEN;
};
unsigned int *acpi_check_rsd_ptr(unsigned int *ptr) {
char *sig = "RSD PTR ";
struct RSDPtr *rsdp = (struct RSDPtr *) ptr;
char *bptr;
char check = 0;
unsigned int i;
if (memory_compare(sig, rsdp, 8) == 0) {
bptr = (char *) ptr;
for (i = 0; i < sizeof(struct RSDPtr); i++) {
check += *bptr;
bptr++;
}
if (check == 0) {
return (unsigned int *) rsdp->RsdtAddress;
}
}
return NULL;
}
unsigned int *acpi_get_rsd_ptr() {
unsigned int *addr;
unsigned int *rsdp;
for (addr = (unsigned int *) 0x000E0000; (int) addr < 0x00100000; addr += 0x10 / sizeof(addr)) {
rsdp = acpi_check_rsd_ptr(addr);
if (rsdp != NULL)
return rsdp;
}
int ebda = *((short *) 0x40E);
ebda = ebda * 0x10 & 0x000FFFFF;
for (addr = (unsigned int *) ebda; (int) addr < ebda + 1024; addr += 0x10 / sizeof(addr)) {
rsdp = acpi_check_rsd_ptr(addr);
if (rsdp != NULL)
return rsdp;
}
return NULL;
}
int acpi_check_header(unsigned int *ptr, char *sig) {
if (memory_compare(ptr, sig, 4) == 0) {
char *checkPtr = (char *) ptr;
int len = *(ptr + 1);
char check = 0;
while (0 < len--) {
check += *checkPtr;
checkPtr++;
}
if (check == 0)
return 0;
}
return -1;
}
int acpi_enable() {
if ((receive_w((unsigned int) PM1a_CNT) & SCI_EN) == 0) {
if (SMI_CMD != 0 && ACPI_ENABLE != 0) {
send_b((unsigned int) SMI_CMD, ACPI_ENABLE); // Enable ACPI
// Try 3s until ACPI is enabled
int i;
for (i = 0; i < 300; i++) {
if ((receive_w((unsigned int) PM1a_CNT) & SCI_EN) == 1)
break;
timer_wait(1);
}
if (PM1b_CNT != 0)
for (; i < 300; i++) {
if ((receive_w((unsigned int) PM1b_CNT) & SCI_EN) == 1)
break;
timer_wait(1);
}
if (i < 300) {
return 0; // Successfully enabled ACPI
} else {
return -1; // ACPI couldn't be enabled
}
} else {
return -1; // ACPI is not supported
}
} else {
return 0; // ACPI was already enabled
}
}
int acpi_install() {
unsigned int *ptr = acpi_get_rsd_ptr();
if (ptr != NULL && acpi_check_header(ptr, "RSDT") == 0) {
int entrys = *(ptr + 1);
entrys = (entrys - 36) / 4;
ptr += 36 / 4;
while (0 < entrys--) {
if (acpi_check_header((unsigned int *) *ptr, "FACP") == 0) {
entrys = -2;
struct FACP *facp = (struct FACP *) *ptr;
if (acpi_check_header((unsigned int *) facp->DSDT, "DSDT") == 0) {
char *S5Addr = (char *) facp->DSDT + 36;
int dsdtLength = *(facp->DSDT + 1) - 36;
while (0 < dsdtLength--) {
if (memory_compare(S5Addr, "_S5_", 4) == 0)
break;
S5Addr++;
}
if (dsdtLength > 0) {
if ((*(S5Addr - 1) == 0x08 || (*(S5Addr - 2) == 0x08 && *(S5Addr - 1) == '\\')) &&
*(S5Addr + 4) == 0x12) {
S5Addr += 5;
S5Addr += ((*S5Addr & 0xC0) >> 6) + 2;
if (*S5Addr == 0x0A)
S5Addr++;
SLP_TYPa = *(S5Addr) << 10;
S5Addr++;
if (*S5Addr == 0x0A)
S5Addr++;
SLP_TYPb = *(S5Addr) << 10;
SMI_CMD = facp->SMI_CMD;
ACPI_ENABLE = facp->ACPI_ENABLE;
ACPI_DISABLE = facp->ACPI_DISABLE;
PM1a_CNT = facp->PM1a_CNT_BLK;
PM1b_CNT = facp->PM1b_CNT_BLK;
PM1_CNT_LEN = facp->PM1_CNT_LEN;
SLP_EN = 1 << 13;
SCI_EN = 1;
return 0;
} // Else: \_S5 parse error
} // Else: \_S5 not present
} // Else: DSDT invalid
}
ptr++;
} // Else: no valid FACP present
} // Else: No ACPI available
return -1;
}
void acpi_poweroff() {
acpi_install();
acpi_enable();
if (SCI_EN == 0) {
serial_write("ACPI shutdown is not supported\n");
return;
}
// Send shutdown command
send_w((unsigned int) PM1a_CNT, SLP_TYPa | SLP_EN);
if (PM1b_CNT != 0)
send_w((unsigned int) PM1b_CNT, SLP_TYPb | SLP_EN);
else {
send_w(0xB004, 0x2000); // Bochs
send_w(0x604, 0x2000); // QEMU
send_w(0x4004, 0x3400); // VirtualBox
}
serial_write("Shutdown failed\n");
}
void reboot() {
asm volatile ("cli");
uint8_t good = 0x02;
while (good & 0x02)
good = receive_b(0x64);
send_b(0x64, 0xFE);
loop:
asm volatile ("hlt");
goto loop;
}
|