1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
#include <stddef.h>
#include <stdint.h>
#include <memory/paging.h>
#include <memory/alloc.h>
#include <system.h>
#include <lib/lib.h>
extern u32 end;
u32 placement_address;
struct heap_header *kheap = NULL;
struct heap_header *uheap = NULL;
void kheap_init()
{
end = &end;
placement_address = end;
kheap = (struct heap_header *)fmalloc(KHEAP_SIZE);
init_heap(kheap, KHEAP_SIZE);
// Make user heap
uheap = (struct heap_header *)kmalloc_a(UHEAP_SIZE);
init_heap(uheap, UHEAP_SIZE);
paging_map_user(paging_root_directory, (u32)&uheap, (u32)&uheap);
}
void *fmalloc(u32 size)
{
assert(placement_address + size < MEM_END);
u32 hold = placement_address;
memset((void *)hold, 0, size);
placement_address += size;
return (void *)hold;
}
void *kmalloc_a(u32 size)
{
assert(((placement_address & 0xFFFFF000) + 0x1000) + size < MEM_END);
placement_address &= 0xFFFFF000;
placement_address += 0x1000;
u32 hold = placement_address;
placement_address += size;
return (void *)hold;
}
struct heap_header *find_sized_heap(struct heap_header *heap, u32 size)
{
while ((heap->size < HEAP_FIND_SIZE + size) || (heap->free != true)) {
assert(heap->magic == KHEAP_MAGIC);
assert(heap->magic2 == KHEAP_MAGIC2);
struct heap_footer *foot = (struct heap_footer *)((u32)heap + HEAP_S + heap->size);
assert(foot->magic == KHEAP_MAGIC);
assert(foot->magic2 == KHEAP_MAGIC2);
if (foot->size == KHEAP_END)
panic("Out of heap space");
if (foot->size != heap->size)
panic("Heap footer/header mismatch");
heap = (struct heap_header *)((u32)foot + sizeof(struct heap_footer));
}
return heap;
}
void split_heap(struct heap_header *heap, u32 size)
{
struct heap_footer *foot = (struct heap_footer *)((u32)heap + HEAP_S + size);
foot->magic = KHEAP_MAGIC;
foot->magic2 = KHEAP_MAGIC2;
foot->size = size;
u32 new_size = heap->size - HEAP_TOTAL - size;
heap->size = size;
heap = (struct heap_header *)((u32)foot + sizeof(struct heap_footer));
heap->size = new_size;
heap->free = true;
heap->magic = KHEAP_MAGIC;
heap->magic2 = KHEAP_MAGIC2;
foot = (struct heap_footer *)((u32)heap + HEAP_S + heap->size);
if ((foot->magic != KHEAP_MAGIC) || (foot->magic2 != KHEAP_MAGIC2)) {
warn("Invalid footer in split");
}
if (foot->size != KHEAP_END)
foot->size = new_size;
}
void free_internal(struct heap_header *heap, void *address)
{
struct heap_header *head = (struct heap_header *)((u32)address - HEAP_S);
if (head == heap) {
//warn("Can't collapse top of heap"); // TODO: Fix "can't collapse top of heap" at start
head->free = true;
return;
}
if ((head->magic != KHEAP_MAGIC) || (head->magic2 != KHEAP_MAGIC2)) {
warn("Invalid header in heap");
return;
}
struct heap_footer *foot = (struct heap_footer *)((u32)head + HEAP_S + head->size);
if ((foot->magic != KHEAP_MAGIC) || (foot->magic2 != KHEAP_MAGIC2))
panic("Bad heap call");
foot = (struct heap_footer *)((u32)head - sizeof(struct heap_footer));
if ((foot->magic != KHEAP_MAGIC) || (foot->magic2 != KHEAP_MAGIC2)) {
warn("Invalid footer in heap");
return;
}
if (foot->size == KHEAP_END)
panic("Impossible condition for heap");
heap = (struct heap_header *)((u32)foot - foot->size - HEAP_S);
if ((heap->magic != KHEAP_MAGIC) || (heap->magic2 != KHEAP_MAGIC2)) {
warn("Invalid parent in heap");
return;
}
foot = (struct heap_footer *)((u32)heap + (heap->size + head->size + HEAP_TOTAL) + HEAP_S);
if ((foot->magic != KHEAP_MAGIC) || (foot->magic2 != KHEAP_MAGIC2)) {
panic("Fatal arithmetic error in free() call");
return;
}
heap->size += head->size + HEAP_TOTAL;
foot->size = heap->size;
}
void *malloc_internal(struct heap_header *heap, u32 size)
{
heap = find_sized_heap(heap, size + 8);
heap->free = false;
split_heap(heap, size);
return (void *)((u32)heap + HEAP_S);
}
void init_heap(struct heap_header *heap, u32 size)
{
heap->magic = KHEAP_MAGIC;
heap->magic2 = KHEAP_MAGIC2;
heap->free = true;
heap->size = size - HEAP_TOTAL;
struct heap_footer *foot = (struct heap_footer *)((u32)heap + HEAP_S + heap->size);
foot->magic = KHEAP_MAGIC;
foot->magic2 = KHEAP_MAGIC2;
foot->size = KHEAP_END;
}
void *kmalloc(u32 size)
{
if (kheap == NULL)
return fmalloc(size);
return malloc_internal(kheap, size);
}
void *kcalloc(u32 num, u32 size)
{
void *ptr = kmalloc(num * size);
memset(ptr, 0, num * size);
return ptr;
}
void kfree(void *address)
{
if (kheap == NULL)
return;
free_internal(kheap, address);
}
void *umalloc(u32 size)
{
return malloc_internal(uheap, size);
}
void *ucalloc(u32 num, u32 size)
{
void *ptr = umalloc(num * size);
memset(ptr, 0, num * size);
return ptr;
}
void ufree(void *address)
{
free_internal(uheap, address);
}
|