aboutsummaryrefslogtreecommitdiffhomepage
path: root/readme.md
diff options
context:
space:
mode:
Diffstat (limited to 'readme.md')
-rw-r--r--readme.md95
1 files changed, 60 insertions, 35 deletions
diff --git a/readme.md b/readme.md
index c64fd84..9023b61 100644
--- a/readme.md
+++ b/readme.md
@@ -10,23 +10,23 @@ lambda calculus.
Unfortunately, the Unicode standard does not yet have many
(single-character) birds. These are the ones currently mapped/supported:
-| emoji | animal | combinator | bruijn | term |
-|:-----:|----------------|--------------|---------------------|------------------------------------|
-| πŸ¦‰ | owl | owl | `[[0(10)]]` | $\lambda ab.b(ab)$ |
-| πŸ¦… | eagle | eagle | `[[[[[43(210)]]]]]` | $\lambda abcde.ab(cde)$ |
-| πŸͺ½ | wing | phoenix | `[[[[3(20)(10)]]]]` | $\lambda abcd.a(bd)(cd)$ |
-| πŸ•ŠοΈ | dove | dove | `[[[[32(10)]]]]` | $\lambda abcd.ab(cd)$ |
-| 🦜 | parrot | mockingbird | `[00]` | $\lambda a.aa$ |
-| πŸ¦† | duck | quacky | `[[[0(12)]]]` | $\lambda abc.c(ba)$ |
-| 🐀 | touring chick | turing | `[[0(110)]]` | $\lambda ab.b(aab)$ |
-| πŸ₯ | kool chick | kestrel | `[[1]]` | $\lambda ab.a$ |
-| 🐣 | hatching chick | quirky | `[[[0(21)]]]` | $\lambda abc.c(ab)$ |
-| 🐦 | simple bird | identity | `[0]` | $\lambda a.a$ |
-| 🦚 | peacock | queer | `[[[1(20)]]]` | $\lambda abc.b(ac)$ |
-| 🦀 | dodo | sage | `[[0(11)][0(11)]]` | $\lambda ab.b(aa)\lambda ab.b(aa)$ |
-| 🐧 | penguin | blackbird | `[[[2(10)]]]` | $\lambda abc.a(bc)$ |
-| 🦒 | swan | substitution | `[[[20(10)]]]` | $\lambda abc.ac(bc)$ |
-| 🦩 | flamingo | cardinal | `[[[201]]]` | $\lambda abc.acb$ |
+| emoji | animal | combinator | term |
+|:-----:|----------------|--------------|------------------------------------|
+| πŸ¦‰ | owl | owl | $\lambda ab.b(ab)$ |
+| πŸ¦… | eagle | eagle | $\lambda abcde.ab(cde)$ |
+| πŸͺ½ | wing | phoenix | $\lambda abcd.a(bd)(cd)$ |
+| πŸ•ŠοΈ | dove | dove | $\lambda abcd.ab(cd)$ |
+| 🦜 | parrot | mockingbird | $\lambda a.aa$ |
+| πŸ¦† | duck | quacky | $\lambda abc.c(ba)$ |
+| 🐀 | touring chick | turing | $\lambda ab.b(aab)$ |
+| πŸ₯ | kool chick | kestrel | $\lambda ab.a$ |
+| 🐣 | hatching chick | quirky | $\lambda abc.c(ab)$ |
+| 🐦 | simple bird | identity | $\lambda a.a$ |
+| 🦚 | peacock | queer | $\lambda abc.b(ac)$ |
+| 🦀 | dodo | sage | $\lambda ab.a(bb)\lambda ab.a(bb)$ |
+| 🐧 | penguin | blackbird | $\lambda abc.a(bc)$ |
+| 🦒 | swan | substitution | $\lambda abc.ac(bc)$ |
+| 🦩 | flamingo | cardinal | $\lambda abc.acb$ |
Lonely/unmatched birbs: πŸ”πŸ¦ƒπŸ“
@@ -35,10 +35,13 @@ Lonely/unmatched birbs: πŸ”πŸ¦ƒπŸ“
- `[birb]+`: Birb
- everything else: Comment
+Syntax errors are impossible as long as you use at least one birb.
+
# Semantics
Birbs stagger as they walk: they are reduced in alternating associative
-order, starting with birb index $\lfloor\frac{\texttt{len}}{2}\rfloor$:
+order, starting with left associativity at birb index
+$\lfloor\frac{\texttt{len}}{2}\rfloor$:
🐦🐦 -> (🐦🐦)
🐦🐦🐦 -> ((🐦🐦)🐦)
@@ -46,46 +49,65 @@ order, starting with birb index $\lfloor\frac{\texttt{len}}{2}\rfloor$:
🐦🐦🐦🐦🐦 -> ((🐦((🐦🐦)🐦))🐦)
🐦🐦🐦🐦🐦🐦 -> (🐦((🐦((🐦🐦)🐦))🐦))
🐦🐦🐦🐦🐦🐦🐦 -> ((🐦((🐦((🐦🐦)🐦))🐦))🐦)
+ ...
# Examples
-You can find more examples in the `samples/` directory.
+You can find more examples (with comments) in the `samples/` directory.
## Relationships
-- πŸ¦‰πŸ¦ $\rightsquigarrow$ 🦜
+- πŸͺ½πŸ¦ $\rightsquigarrow$ 🦒
- 🦒🐦 $\rightsquigarrow$ πŸ¦‰
+- πŸ¦‰πŸ¦ $\rightsquigarrow$ 🦜
+- πŸ•ŠοΈπŸ¦ $\rightsquigarrow$ 🐧
- 🐧🐧 $\rightsquigarrow$ πŸ•ŠοΈ
- 🦩🐧 $\rightsquigarrow$ 🦚
- 🦩🦚 $\rightsquigarrow$ 🐧
+- πŸ¦©πŸ¦† $\rightsquigarrow$ 🐣
-One can only imagine what happens if two parrots repeat each other: 🦜🦜
-$\rightsquigarrow$ πŸ’₯
+One can only imagine what happens if two parrots talk to each other:
+🦜🦜 $\rightsquigarrow$ πŸ’₯. The same happens with 🐀🐀; they just can’t
+stop waddling!
## Arithmetic
For this example I use the Church numerals. Zero would then be encoded
as πŸ₯🐦. The successor function can be written as 🦒🐧:
-- 🐦🐧🐦🦒🐧πŸ₯🐦 $\rightsquigarrow$ λλ(10) – (Church numeral 1)
-- πŸ¦πŸ§πŸ¦πŸ§πŸ•ŠοΈπŸ¦’πŸ§πŸ¦’πŸ§πŸ₯🐦 $\rightsquigarrow$ λλ(1(10)) – (Church numeral
- 2)
+- 🐦🐧🐦🦒🐧πŸ₯🐦 $\rightsquigarrow\lambda\lambda(10)$ – (Church numeral
+ 1)
+- πŸ¦πŸ§πŸ¦πŸ§πŸ•ŠοΈπŸ¦’πŸ§πŸ¦’πŸ§πŸ₯🐦 $\rightsquigarrow\lambda(1(10))$ – (Church
+ numeral 2)
Similarly, one can very obviously translate the Church addition function
-to 🐧🦒πŸ₯πŸ¦’πŸ•ŠοΈ. Now, to calculate $1+2$ based on their increments from
-zero:
+to πŸͺ½πŸ§. Now, to calculate $1+2$ based on their increments from zero:
-- 🦒🐧🦒🐧πŸ₯🐦
+- πŸ¦πŸ¦πŸ•ŠοΈπŸ§πŸ•ŠοΈπŸ§πŸ¦πŸ§πŸ•ŠοΈπŸ§πŸ•ŠοΈπŸͺ½πŸ§πŸ¦’🐧🦒🐧πŸ₯🐦🦒🐧πŸ₯🐦
+ $\rightsquigarrow\lambda(1(1(10)))$ – (Church numeral 3)
Also: 🐧 is $a\cdot b$, 🦜 is $n^n$ and 🦚🐦 $a^b$.
-Note that there are many alternative ways to do arithmetic. Try writing
-the functions above with other birbs!
+Note that there exist many alternative ways to do arithmetic. Try
+writing the functions above with other birbs!
+
+## Containers
+
+You can create a pair $\langle X,Y\rangle$ using `🦩🦩🦩YX`.
+
+Typically, one would now construct a list using repeated application of
+pairs (Boehm-Berarducci/Church encoding). However, due to the reversed
+application and alternating associativity, the Mogensen-Scott encoding
+is more suitable:
+
+List $\langle X_1,X_2,\dots,X_n\rangle$: `[🦩]ⁿ🦩X2X1...XN`.
## Busy ~~beavers~~ birbs
-- The touring eagle: πŸ¦πŸ¦πŸ¦πŸ¦…πŸ€πŸ¦…πŸ€πŸ¦…πŸ€ (~20M BLC bits)
-- more? PR!
+Contestants:
+
+- *The touring eagle*: `[🐦]ⁿ[πŸ¦…πŸ€]ⁿ` ($n=3$: 9 birbs, ~20M BLC bits)
+- better? PR!
# Usage
@@ -102,9 +124,12 @@ sometimes manually converted the term back to birbs.
# Turing-completeness
-The language is probably Turing complete. If the language supported
-left- *and* right-associativity, 🐧 would be enough to prove its
-completeness.
+Birb is Turing complete.
+
+It turns out that even its sub-language $\Sigma=\{🦒πŸ₯\}$ (SK) is Turing
+complete, since the semantics allow an initial construction of 🐦 using
+`((🦒 πŸ₯) πŸ₯)`. By doing that, birb is equivalent to the
+[Jot](https://esolangs.org/wiki/Jot) variant of Iota calculus.
------------------------------------------------------------------------