aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorMarvin Borner2022-08-16 23:18:14 +0200
committerMarvin Borner2022-08-16 23:18:14 +0200
commitc5f1bbbf5aa9544465fc14f19c5009181ef9fc1c (patch)
tree65badb97d72cb897a6b9fc3bc5dc9ba23c39fa6c
parente06bf5c88f10c14286ea9fd91f4bdba00cda6da9 (diff)
Std improvements
very descriptive as always :D I honestly don't know though
-rw-r--r--std/Combinator.bruijn10
-rw-r--r--std/List.bruijn116
-rw-r--r--std/Logic.bruijn16
-rw-r--r--std/Number.bruijn220
4 files changed, 213 insertions, 149 deletions
diff --git a/std/Combinator.bruijn b/std/Combinator.bruijn
index 6144519..a1ffd1a 100644
--- a/std/Combinator.bruijn
+++ b/std/Combinator.bruijn
@@ -15,11 +15,13 @@ B [[[2 (1 0)]]]
# Blackbird combinator
B' [[[[3 (2 1 0)]]]]
-(...) B'
+(..) B'
# Bunting combinator
B'' [[[[[4 (3 2 1 0)]]]]]
+(...) B''
+
# Becard combinator
B''' [[[[3 (2 (1 0))]]]]
@@ -179,12 +181,6 @@ Z [[1 [1 1 0]] [1 [1 1 0]]]
# iota combinator
i [0 S K]
-# True
-true K
-
-# False
-false KI
-
# -- combinator equivalency tests --
:test (A) (S (S K))
diff --git a/std/List.bruijn b/std/List.bruijn
index 1ccae40..44d833f 100644
--- a/std/List.bruijn
+++ b/std/List.bruijn
@@ -1,4 +1,5 @@
# MIT License, Copyright (c) 2022 Marvin Borner
+# Lists in Church/Boehm-Berarducci encoding using pairs
:import std/Combinator .
@@ -14,10 +15,12 @@ empty false
# returns whether a list is empty
empty? [0 [[[false]]] true]
-:test (empty? empty) (true)
-:test (empty? (cons (+2) empty)) (false)
+<>?( empty?
-# appends an element to a list
+:test (<>?empty) (true)
+:test (<>?(cons (+2) empty)) (false)
+
+# prepends an element to a list
cons P.pair
(:) cons
@@ -28,17 +31,21 @@ cons P.pair
# returns the head of a list or empty
head P.fst
-:test (head ((+1) : ((+2) : empty))) ((+1))
+^( head
+
+:test (^((+1) : ((+2) : empty))) ((+1))
# returns the tail of a list or empty
tail P.snd
-:test (tail ((+1) : ((+2) : empty))) ((+2) : empty)
+~( tail
+
+:test (~((+1) : ((+2) : empty))) ((+2) : empty)
# returns the length of a list in balanced ternary
length Z [[[case-some]]] case-empty
- case-some empty? 0 case-end case-inc
- case-inc 2 (++1) (tail 0)
+ case-some <>?0 case-end case-inc
+ case-inc 2 ++1 ~0
case-end 1
case-empty (+0)
@@ -49,8 +56,8 @@ length Z [[[case-some]]] case-empty
# returns the element at index in list
index Z [[[case-some]]]
- case-some empty? 0 case-end case-index
- case-index =?1 (head 0) (2 (--1) (tail 0))
+ case-some <>?0 case-end case-index
+ case-index =?1 ^0 (2 --1 ~0)
case-end empty
(!!) C index
@@ -62,8 +69,8 @@ index Z [[[case-some]]]
# reverses a list
reverse Z [[[case-some]]] case-empty
- case-some empty? 0 case-end case-rev
- case-rev 2 ((head 0) : 1) (tail 0)
+ case-some <>?0 case-end case-rev
+ case-rev 2 (^0 : 1) ~0
case-end 1
case-empty empty
@@ -77,18 +84,26 @@ list [0 [[[2 (0 : 1)]]] reverse empty]
# appends two lists
append Z [[[case-some]]]
- case-some empty? 1 case-end case-merge
- case-merge (head 1) : (2 (tail 1) 0)
+ case-some <>?1 case-end case-merge
+ case-merge ^1 : (2 ~1 0)
case-end 0
(++) append
:test (((+1) : ((+2) : ((+3) : empty))) ++ ((+4) : empty)) ((+1) : ((+2) : ((+3) : ((+4) : empty))))
+# appends an element to a list
+snoc [[1 ++ (0 : empty)]]
+
+(;) snoc
+
+:test (empty ; (+1)) ((+1) : empty)
+:test (((+1) : empty) ; (+2)) ((+1) : ((+2) : empty))
+
# maps each element to a function
map Z [[[case-some]]]
- case-some empty? 0 case-end case-map
- case-map (1 (head 0)) : (2 1 (tail 0))
+ case-some <>?0 case-end case-map
+ case-map (1 ^0) : (2 1 ~0)
case-end empty
(<$>) map
@@ -97,8 +112,8 @@ map Z [[[case-some]]]
# applies a left fold on a list
foldl Z [[[[case-some]]]]
- case-some empty? 0 case-end case-fold
- case-fold 3 2 (2 1 (head 0)) (tail 0)
+ case-some <>?0 case-end case-fold
+ case-fold 3 2 (2 1 ^0) ~0
case-end 1
:test ((foldl add (+0) ((+1) : ((+2) : ((+3) : empty)))) =? (+6)) (true)
@@ -106,8 +121,8 @@ foldl Z [[[[case-some]]]]
# applies a right fold on a list
foldr [[[Z [[case-some]] case-empty]]]
- case-some empty? 0 case-end case-fold
- case-fold 4 (head 0) (1 (tail 0))
+ case-some <>?0 case-end case-fold
+ case-fold 4 ^0 (1 ~0)
case-end 3
case-empty 0
@@ -116,82 +131,105 @@ foldr [[[Z [[case-some]] case-empty]]]
# filters a list based on a predicate
filter Z [[[case-some]]]
- case-some empty? 0 case-end case-filter
- case-filter 1 (head 0) (cons (head 0)) I (2 1 (tail 0))
+ case-some <>?0 case-end case-filter
+ case-filter 1 ^0 (cons ^0) I (2 1 ~0)
case-end empty
-:test (filter zero? ((+1) : ((+0) : ((+3) : empty)))) ((+0) : empty)
+(<#>) C filter
+
+:test (((+1) : ((+0) : ((+3) : empty))) <#> zero?) ((+0) : empty)
# returns the last element of a list
last Z [[case-some]]
- case-some empty? 0 case-end case-last
- case-last empty? (tail 0) (head 0) (1 (tail 0))
+ case-some <>?0 case-end case-last
+ case-last <>?(~0) ^0 (1 ~0)
case-end empty
+_( last
+
:test (last ((+1) : ((+2) : ((+3) : empty)))) ((+3))
# returns everything but the last element of a list
init Z [[case-some]]
- case-some empty? 0 case-end case-init
- case-init empty? (tail 0) empty ((head 0) : (1 (tail 0)))
+ case-some <>?0 case-end case-init
+ case-init <>?(~0) empty (^0 : (1 ~0))
case-end empty
:test (init ((+1) : ((+2) : ((+3) : empty)))) ((+1) : ((+2) : empty))
# zips two lists discarding excess elements
zip Z [[[case-some]]]
- case-some empty? 1 case-end case-zip
- case-zip empty? 0 empty (((head 1) : (head 0)) : (2 (tail 1) (tail 0)))
+ case-some <>?1 case-end case-zip
+ case-zip <>?0 empty ((^1 : ^0) : (2 ~1 ~0))
case-end empty
:test (zip ((+1) : ((+2) : empty)) ((+2) : ((+1) : empty))) (((+1) : (+2)) : (((+2) : (+1)) : empty))
# applies pairs of the zipped list as arguments to a function
zip-with Z [[[[case-some]]]]
- case-some empty? 1 case-end case-zip
- case-zip empty? 0 empty ((2 (head 1) (head 0)) : (3 2 (tail 1) (tail 0)))
+ case-some <>?1 case-end case-zip
+ case-zip <>?0 empty ((2 ^1 ^0) : (3 2 ~1 ~0))
case-end empty
:test (zip-with add ((+1) : ((+2) : empty)) ((+2) : ((+1) : empty))) ((+3) : ((+3) : empty))
# returns first n elements of a list
take Z [[[case-some]]]
- case-some empty? 0 case-end case-take
- case-take =?1 empty ((head 0) : (2 (--1) (tail 0)))
+ case-some <>?0 case-end case-take
+ case-take =?1 empty (^0 : (2 --1 ~0))
case-end empty
:test (take (+2) ((+1) : ((+2) : ((+3) : empty)))) ((+1) : ((+2) : empty))
# takes elements while a predicate is satisfied
take-while Z [[[case-some]]]
- case-some empty? 0 case-end case-take
- case-take 1 (head 0) ((head 0) : (2 1 (tail 0))) empty
+ case-some <>?0 case-end case-take
+ case-take 1 ^0 (^0 : (2 1 ~0)) empty
case-end empty
:test (take-while zero? ((+0) : ((+0) : ((+1) : empty)))) ((+0) : ((+0) : empty))
# removes first n elements of a list
drop Z [[[case-some]]]
- case-some empty? 0 case-end case-drop
- case-drop =?1 0 (2 (--1) (tail 0))
+ case-some <>?0 case-end case-drop
+ case-drop =?1 0 (2 --1 ~0)
case-end empty
:test (drop (+2) ((+1) : ((+2) : ((+3) : empty)))) ((+3) : empty)
# removes elements while a predicate is satisfied
drop-while Z [[[case-some]]]
- case-some empty? 0 case-end case-drop
- case-drop 1 (head 0) (2 1 (tail 0)) 0
+ case-some <>?0 case-end case-drop
+ case-drop 1 ^0 (2 1 ~0) 0
case-end empty
:test (drop-while zero? ((+0) : ((+0) : ((+1) : empty)))) ((+1) : empty)
+# removes duplicates from list based on eq predicate (keeps only first occurrence)
+nub Z [[[case-some]]]
+ case-some <>?0 case-end case-nub
+ case-nub ^0 : (2 1 (~0 <#> [!(2 0 ^1)]))
+ case-end empty
+
+:test (nub eq? ((+1) : ((+2) : ((+3) : empty)))) (((+1) : ((+2) : ((+3) : empty))))
+:test (nub eq? ((+1) : ((+2) : ((+1) : empty)))) (((+1) : ((+2) : empty)))
+
# returns a list with n-times a element
repeat Z [[[case-some]]]
case-some =?1 case-end case-repeat
- case-repeat 0 : (2 (--1) 0)
+ case-repeat 0 : (2 --1 0)
case-end empty
:test (repeat (+5) (+4)) (((+4) : ((+4) : ((+4) : ((+4) : ((+4) : empty))))))
:test (repeat (+1) (+4)) (((+4) : empty))
:test (repeat (+0) (+4)) (empty)
+
+# returns a list with infinite-times previous (or start) value applied to a function
+iterate Z [[[case-some]]]
+ case-some case-iterate
+ case-iterate 0 : (2 1 (1 0))
+
+:test (take (+5) (iterate inc (+0))) (((+0) : ((+1) : ((+2) : ((+3) : ((+4) : empty))))))
+:test (take (+2) (iterate dec (+5))) (((+5) : ((+4) : empty)))
+:test (take (+5) (iterate I (+4))) (repeat (+5) (+4))
+:test (take (+0) (iterate inc (+0))) (empty)
diff --git a/std/Logic.bruijn b/std/Logic.bruijn
index f4b7470..4174712 100644
--- a/std/Logic.bruijn
+++ b/std/Logic.bruijn
@@ -2,6 +2,13 @@
:import std/Combinator .
+# true
+true K
+
+# false
+false KI
+
+# inverts boolean value
not [0 false true]
!( not
@@ -9,6 +16,7 @@ not [0 false true]
:test (!true) (false)
:test (!false) (true)
+# true if both args are true
and [[1 0 false]]
(&&) and
@@ -18,6 +26,7 @@ and [[1 0 false]]
:test (false && true) (false)
:test (false && false) (false)
+# true if not both args are true
nand [[1 0 1 false true]]
:test (nand true true) (false)
@@ -25,6 +34,7 @@ nand [[1 0 1 false true]]
:test (nand false true) (true)
:test (nand false false) (true)
+# true if one of the args is true
or [[1 true 0]]
(||) or
@@ -34,6 +44,7 @@ or [[1 true 0]]
:test (false || true) (true)
:test (false || false) (false)
+# true if both args are false
nor [[1 1 0 false true]]
:test (nor true true) (false)
@@ -41,6 +52,7 @@ nor [[1 1 0 false true]]
:test (nor false true) (false)
:test (nor false false) (true)
+# true if args are not same bools
xor [[1 (not 0) 0]]
:test (xor true true) (false)
@@ -48,6 +60,7 @@ xor [[1 (not 0) 0]]
:test (xor false true) (true)
:test (xor false false) (false)
+# true if both args are same bools
xnor [[1 0 (not 0)]]
:test (xnor true true) (true)
@@ -55,6 +68,7 @@ xnor [[1 0 (not 0)]]
:test (xnor false true) (false)
:test (xnor false false) (true)
+# if first arg is true, exec first exp; else second exp
# this function is generally redundant
# I personally just write (exp? case-T case-F) directly
if [[[2 1 0]]]
@@ -66,6 +80,7 @@ if [[[2 1 0]]]
:test (if false true false) (false)
:test ((false ?! true) false) (false)
+# mathematical implies definition
implies [[or (not 1) 0]]
(=>?) implies
@@ -75,6 +90,7 @@ implies [[or (not 1) 0]]
:test (false =>? true) (true)
:test (false =>? false) (true)
+# mathematical iff (if and only if) definition
iff [[and (implies 1 0) (implies 0 1)]]
(<=>?) iff
diff --git a/std/Number.bruijn b/std/Number.bruijn
index 89d04d3..81e6636 100644
--- a/std/Number.bruijn
+++ b/std/Number.bruijn
@@ -8,32 +8,32 @@
:import std/Logic .
# negative trit indicating coeffecient of (-1)
-trit-neg [[[2]]]
+t< [[[2]]]
# returns whether a trit is negative
-trit-neg? [0 true false false]
+t<? [0 true false false]
# positive trit indicating coeffecient of (+1)
-trit-pos [[[1]]]
+t> [[[1]]]
# returns whether a trit is positive
-trit-pos? [0 false true false]
+t>? [0 false true false]
# zero trit indicating coeffecient of 0
-trit-zero [[[0]]]
+t= [[[0]]]
# returns whether a trit is zero
-trit-zero? [0 false false true]
-
-:test (trit-neg? trit-neg) (true)
-:test (trit-neg? trit-pos) (false)
-:test (trit-neg? trit-zero) (false)
-:test (trit-pos? trit-neg) (false)
-:test (trit-pos? trit-pos) (true)
-:test (trit-pos? trit-zero) (false)
-:test (trit-zero? trit-neg) (false)
-:test (trit-zero? trit-pos) (false)
-:test (trit-zero? trit-zero) (true)
+t=? [0 false false true]
+
+:test (t<? t<) (true)
+:test (t<? t>) (false)
+:test (t<? t=) (false)
+:test (t>? t<) (false)
+:test (t>? t>) (true)
+:test (t>? t=) (false)
+:test (t=? t<) (false)
+:test (t=? t>) (false)
+:test (t=? t=) (true)
# shifts a negative trit into a balanced ternary number
up-neg [[[[[2 (4 3 2 1 0)]]]]]
@@ -65,16 +65,16 @@ up-zero [[[[[0 (4 3 2 1 0)]]]]]
# shifts a specified trit into a balanced ternary number
up [[[[[[5 2 1 0 (4 3 2 1 0)]]]]]]
-:test (up trit-neg (+42)) (^<(+42))
-:test (up trit-pos (+42)) (^>(+42))
-:test (up trit-zero (+42)) (^=(+42))
+:test (up t< (+42)) (^<(+42))
+:test (up t> (+42)) (^>(+42))
+:test (up t= (+42)) (^=(+42))
# shifts the least significant trit out - basically div by 3
-down [snd (0 z neg pos zero)]
+down [snd (0 z a< a> a=)]
z (+0) : (+0)
- neg [0 [[(^<1) : 1]]]
- pos [0 [[(^>1) : 1]]]
- zero [0 [[(^=1) : 1]]]
+ a< [0 [[^<1 : 1]]]
+ a> [0 [[^>1 : 1]]]
+ a= [0 [[^=1 : 1]]]
# negates a balanced ternary number
negate [[[[[4 3 1 2 0]]]]]
@@ -86,49 +86,49 @@ negate [[[[[4 3 1 2 0]]]]]
:test (-(+42)) ((-42))
# converts a balanced ternary number to a list of trits
-list! [0 z neg pos zero]
+list! [0 z a< a> a=]
z [[0]]
- neg [trit-neg : 0]
- pos [trit-pos : 0]
- zero [trit-zero : 0]
+ a< [t< : 0]
+ a> [t> : 0]
+ a= [t= : 0]
# TODO: Tests!
# strips leading 0s from balanced ternary number
-strip [fst (0 z neg pos zero)]
+strip [fst (0 z a< a> a=)]
z (+0) : true
- neg [0 [[(^<1) : false]]]
- pos [0 [[(^>1) : false]]]
- zero [0 [[(0 (+0) (^=1)) : 0]]]
+ a< [0 [[^<1 : false]]]
+ a> [0 [[^>1 : false]]]
+ a= [0 [[(0 (+0) ^=1) : 0]]]
-~( strip
+%( strip
-:test (~[[[[0 3]]]]) ((+0))
-:test (~[[[[2 (0 (0 (0 (0 3))))]]]]) ((-1))
-:test (~(+42)) ((+42))
+:test (%[[[[0 3]]]]) ((+0))
+:test (%[[[[2 (0 (0 (0 (0 3))))]]]]) ((-1))
+:test (%(+42)) ((+42))
# extracts least significant trit from balanced ternary numbers
-lst [0 trit-zero [trit-neg] [trit-pos] [trit-zero]]
+lst [0 t= [t<] [t>] [t=]]
-:test (lst (+0)) (trit-zero)
-:test (lst (-1)) (trit-neg)
-:test (lst (+1)) (trit-pos)
-:test (lst (+42)) (trit-zero)
+:test (lst (-1)) (t<)
+:test (lst (+0)) (t=)
+:test (lst (+1)) (t>)
+:test (lst (+42)) (t=)
# extracts most significant trit from balanced ternary numbers
# TODO: Find a more elegant way to do this (and resolve list import loop?)
-mst [fix (last (list! (~0)))]
- last Z [[empty? 0 [false] [empty? (snd 1) (fst 1) (2 (snd 1))] I]]
- empty? [0 [[[false]]] true]
- fix [((trit-neg? 0) || ((trit-pos? 0) || (trit-zero? 0))) 0 trit-zero]
+mst [fix (last (list! %0))]
+ last Z [[<>?0 [false] [<>?(snd 1) (fst 1) (2 (snd 1))] I]]
+ <>?( [0 [[[false]]] true]
+ fix [((t<? 0) || ((t>? 0) || (t=? 0))) 0 t=]
-:test (mst (+0)) (trit-zero)
-:test (mst (-1)) (trit-neg)
-:test (mst (+1)) (trit-pos)
-:test (mst (+42)) (trit-pos)
+:test (mst (-1)) (t<)
+:test (mst (+0)) (t=)
+:test (mst (+1)) (t>)
+:test (mst (+42)) (t>)
# returns whether balanced ternary number is negative
-negative? [trit-neg? (mst 0)]
+negative? [t<? (mst 0)]
<?( negative?
@@ -138,7 +138,7 @@ negative? [trit-neg? (mst 0)]
:test (<?(+42)) (false)
# returns whether balanced ternary number is positive
-positive? [trit-pos? (mst 0)]
+positive? [t>? (mst 0)]
>?( positive?
@@ -158,35 +158,39 @@ zero? [0 true [false] [false] I]
:test (=?(+42)) (false)
# converts the normal balanced ternary representation into abstract
-# -> the abstract representation is used in add/sub/mul
-abstract! [0 z neg pos zero]
+# -> the abstract representation is used in eq?/add/sub/mul
+abstract! [0 z a< a> a=]
z (+0)
- neg [[[[[2 4]]]]]
- pos [[[[[1 4]]]]]
- zero [[[[[0 4]]]]]
+ a< [[[[[2 4]]]]]
+ a> [[[[[1 4]]]]]
+ a= [[[[[0 4]]]]]
-:test (abstract! (-3)) ([[[[0 [[[[2 [[[[3]]]]]]]]]]]])
-:test (abstract! (+0)) ([[[[3]]]])
-:test (abstract! (+3)) ([[[[0 [[[[1 [[[[3]]]]]]]]]]]])
+->^( abstract!
+
+:test (->^(-3)) ([[[[0 [[[[2 [[[[3]]]]]]]]]]]])
+:test (->^(+0)) ([[[[3]]]])
+:test (->^(+3)) ([[[[0 [[[[1 [[[[3]]]]]]]]]]]])
# converts the abstracted balanced ternary representation back to normal
# using ω to solve recursion
normal! ω rec
rec [[0 (+0) [^<([3 3 0] 0)] [^>([3 3 0] 0)] [^=([3 3 0] 0)]]]
-:test (normal! [[[[3]]]]) ((+0))
-:test (normal! (abstract! (+42))) ((+42))
-:test (normal! (abstract! (-42))) ((-42))
+->_( normal!
+
+:test (->_[[[[3]]]]) ((+0))
+:test (->_(->^(+42))) ((+42))
+:test (->_(->^(-42))) ((-42))
# checks whether two balanced ternary numbers are equal
-# smaller numbers should be second argument (performance)
+# larger numbers should be second argument (performance)
# -> ignores leading 0s!
-eq? [[abs 1 (abstract! 0)]]
- abs [0 z neg pos zero]
- z [zero? (normal! 0)]
- neg [[0 false [2 0] [false] [false]]]
- pos [[0 false [false] [2 0] [false]]]
- zero [[0 (1 0) [false] [false] [2 0]]]
+eq? [[abs 1 ->^0]]
+ abs [0 z a< a> a=]
+ z [=?(->_0)]
+ a< [[0 false [2 0] [false] [false]]]
+ a> [[0 false [false] [2 0] [false]]]
+ a= [[0 (1 0) [false] [false] [2 0]]]
(=?) eq?
@@ -205,11 +209,11 @@ eq? [[abs 1 (abstract! 0)]]
# the same. Something's weird.
# adds (+1) to a balanced ternary number (can introduce leading 0s)
-inc [snd (0 z neg pos zero)]
+inc [snd (0 z a< a> a=)]
z (+0) : (+1)
- neg [0 [[(^<1) : (^=1)]]]
- zero [0 [[(^=1) : (^>1)]]]
- pos [0 [[(^>1) : (^<0)]]]
+ a< [0 [[^<1 : ^=1]]]
+ a> [0 [[^>1 : ^<0]]]
+ a= [0 [[^=1 : ^>1]]]
++( inc
@@ -223,11 +227,11 @@ ssinc strip . inc
:test ((++(+42)) =? (+43)) (true)
# subs (+1) from a balanced ternary number (can introduce leading 0s)
-dec [snd (0 dec-z dec-neg dec-pos dec-zero)]
- dec-z (+0) : (-1)
- dec-neg [0 [[(^<1) : (^>0)]]]
- dec-zero [0 [[(^=1) : (^<1)]]]
- dec-pos [0 [[(^>1) : (^=1)]]]
+dec [snd (0 z a< a> a=)]
+ z (+0) : (-1)
+ a< [0 [[^<1 : ^>0]]]
+ a> [0 [[^>1 : ^=1]]]
+ a= [0 [[^=1 : ^<1]]]
--( dec
@@ -241,24 +245,24 @@ sdec strip . dec
:test ((--(+42)) =? (+41)) (true)
# adds two balanced ternary numbers (can introduce leading 0s)
-# smaller numbers should be second argument (performance)
-add [[abs 1 (abstract! 0)]]
- abs [c (0 z a-neg a-pos a-zero)]
- b-neg [1 (^>(3 0 trit-neg)) (^=(3 0 trit-zero)) (^<(3 0 trit-zero))]
- b-zero [up 1 (3 0 trit-zero)]
- b-pos [1 (^=(3 0 trit-zero)) (^<(3 0 trit-pos)) (^>(3 0 trit-zero))]
- a-neg [[[1 (b-neg 1) b-neg' b-zero b-neg]]]
- b-neg' [1 (^=(3 0 trit-neg)) (^<(3 0 trit-zero)) (^>(3 0 trit-neg))]
- a-pos [[[1 (b-pos 1) b-zero b-pos' b-pos]]]
- b-pos' [1 (^>(3 0 trit-zero)) (^=(3 0 trit-pos)) (^<(3 0 trit-pos))]
- a-zero [[[1 (b-zero 1) b-neg b-pos b-zero]]]
- z [[0 (--(normal! 1)) (++(normal! 1)) (normal! 1)]]
- c [[1 0 trit-zero]]
+# larger numbers should be second argument (performance)
+add [[abs 1 ->^0]]
+ abs [c (0 z a< a> a=)]
+ b< [1 ^>(3 0 t<) ^=(3 0 t=) ^<(3 0 t=)]
+ b= [up 1 (3 0 t=)]
+ b> [1 ^=(3 0 t=) ^<(3 0 t>) ^>(3 0 t=)]
+ a< [[[1 (b< 1) b<' b= b<]]]
+ b<' [1 ^=(3 0 t<) ^<(3 0 t=) ^>(3 0 t<)]
+ a> [[[1 (b> 1) b= b>' b>]]]
+ b>' [1 ^>(3 0 t=) ^=(3 0 t>) ^<(3 0 t>)]
+ a= [[[1 (b= 1) b< b> b=]]]
+ z [[0 --(->_1) ++(->_1) ->_1]]
+ c [[1 0 t=]]
(+) add
# adds two balanced ternary numbers and strips leading 0s
-sadd strip ... add
+sadd strip .. add
:test (((-42) + (-1)) =? (-43)) (true)
:test (((-5) + (+6)) =? (+1)) (true)
@@ -268,13 +272,13 @@ sadd strip ... add
:test (((+42) + (+1)) =? (+43)) (true)
# subs two balanced ternary numbers (can introduce leading 0s)
-# smaller numbers should be second argument (performance)
+# larger numbers should be second argument (performance)
sub [[1 + -0]]
(-) sub
# subs two balanced ternary numbers and strips leading 0s
-ssub strip ... sub
+ssub strip .. sub
:test (((-42) - (-1)) =? (-41)) (true)
:test (((-5) - (+6)) =? (-11)) (true)
@@ -284,8 +288,8 @@ ssub strip ... sub
:test (((+42) - (+1)) =? (+41)) (true)
# returns whether number is greater than other number
-# smaller numbers should be second argument (performance)
-gre? [[positive? (sub 1 0)]]
+# larger numbers should be second argument (performance)
+gre? [[>?(1 - 0)]]
(>?) gre?
@@ -295,7 +299,7 @@ gre? [[positive? (sub 1 0)]]
# returns whether number is less than other number
# smaller numbers should be second argument (performance)
-les? [[negative? (sub 1 0)]]
+les? [[<?(1 - 0)]]
(<?) les?
@@ -305,7 +309,7 @@ les? [[negative? (sub 1 0)]]
# returns whether number is less than or equal to other number
# smaller numbers should be second argument (performance)
-leq? [[not (gre? 1 0)]]
+leq? [[!(1 >? 0)]]
(<=?) leq?
@@ -315,7 +319,7 @@ leq? [[not (gre? 1 0)]]
# returns whether number is greater than or equal to other number
# smaller numbers should be second argument (performance)
-geq? [[not (les? 1 0)]]
+geq? [[!(1 <? 0)]]
(>=?) geq?
@@ -324,20 +328,30 @@ geq? [[not (les? 1 0)]]
:test ((+3) >=? (+2)) (true)
# muls two balanced ternary numbers (can introduce leading 0s)
-mul [[1 (+0) neg pos zero]]
- neg [(^=0) - 1]
- pos [(^=0) + 1]
- zero [^=0]
+mul [[1 (+0) a< a> a=]]
+ a< [^=0 - 1]
+ a> [^=0 + 1]
+ a= [^=0]
(*) mul
-smul strip ... mul
+smul strip .. mul
:test (((+42) * (+0)) =? (+0)) (true)
:test (((-1) * (+42)) =? (-42)) (true)
:test (((+3) * (+11)) =? (+33)) (true)
:test (((+42) * (-4)) =? (-168)) (true)
+# greatest common divisor
+gcd Z [[[(1 =? 0) case-eq ((1 >? 0) case-gre case-les)]]]
+ case-eq 1
+ case-gre 2 (1 - 0) 0
+ case-les 2 1 (0 - 1)
+
+:test ((gcd (+2) (+4)) =? ((+2))) (true)
+:test ((gcd (+10) (+5)) =? ((+5))) (true)
+:test ((gcd (+3) (+8)) =? ((+1))) (true)
+
# factorial function
fac Z [[(0 <? (+2)) (+1) (0 * (1 --0))]]