diff options
Diffstat (limited to 'std/Math/Complex.bruijn')
-rw-r--r-- | std/Math/Complex.bruijn | 64 |
1 files changed, 33 insertions, 31 deletions
diff --git a/std/Math/Complex.bruijn b/std/Math/Complex.bruijn index d3b5a7d..03ae8d5 100644 --- a/std/Math/Complex.bruijn +++ b/std/Math/Complex.bruijn @@ -3,69 +3,60 @@ :import std/Combinator . :import std/Pair . +:import std/Number N +:import std/Math/Rational Q :import std/Math/Real R -ι (+0.0+1.0i) +i (+0.0+1.0i) # converts a balanced ternary number to a complex number -number→complex [[0 (R.number→real 1) (+0.0r)]] ⧗ Number → Complex +number→complex [[(R.number→real 1 0) : ((+0.0r) 0)]] ⧗ Number → Complex :test (number→complex (+5)) ((+5.0+0.0i)) # returns real part of a complex number -real fst ⧗ Complex → Real +real [[1 0 [[1]]]] ⧗ Complex → Real :test (real (+5.0+2.0i)) ((+5.0r)) # returns imaginary part of a complex number -imag snd ⧗ Complex → Real +imag [[1 0 [[0]]]] ⧗ Complex → Real :test (imag (+5.0+2.0i)) ((+2.0r)) -# approximates complex number by turning it into a pair of rationals -approx &[[[(2 0) : (1 0)]]] ⧗ Complex → Number → (Pair Rational Rational) - -:test (approx (+5.0+2.0i) (+2)) ((+5.0q) : (+2.0q)) - -# returns true if two complex numbers are equal approximately -approx-eq? [[[R.approx-eq? 2 (1 2) (0 2)]]] ⧗ Number → Complex → Complex → Boolean - -# TODO: bigger value (higher performance first!) -…≈?… approx-eq? (+1000) - # adds two complex numbers -add &[[&[[(R.add 3 1) : (R.add 2 0)]]]] ⧗ Complex → Complex → Complex +add φ &[[&[[(Q.add 3 1) : (Q.add 2 0)]]]] ⧗ Complex → Complex → Complex …+… add # subtracts two complex numbers -sub &[[&[[(R.sub 3 1) : (R.sub 2 0)]]]] ⧗ Complex → Complex → Complex +sub φ &[[&[[(Q.sub 3 1) : (Q.sub 2 0)]]]] ⧗ Complex → Complex → Complex -…+… sub +…-… sub # multiplies two complex numbers -mul &[[&[[p : q]]]] ⧗ Complex → Complex → Complex - p R.sub (R.mul 3 1) (R.mul 2 0) - q R.add (R.mul 3 0) (R.mul 2 1) +mul φ &[[&[[p : q]]]] ⧗ Complex → Complex → Complex + p Q.sub (Q.mul 3 1) (Q.mul 2 0) + q Q.add (Q.mul 3 0) (Q.mul 2 1) …⋅… mul # divides two complex numbers -div &[[&[[p : q]]]] ⧗ Complex → Complex → Complex - p R.div (R.add (R.mul 3 1) (R.mul 2 0)) (R.add (R.mul 1 1) (R.mul 0 0)) - q R.div (R.sub (R.mul 2 1) (R.mul 1 0)) (R.add (R.mul 1 1) (R.mul 0 0)) +div φ &[[&[[p : q]]]] ⧗ Complex → Complex → Complex + p Q.div (Q.add (Q.mul 3 1) (Q.mul 2 0)) (Q.add (Q.mul 1 1) (Q.mul 0 0)) + q Q.div (Q.sub (Q.mul 2 1) (Q.mul 3 0)) (Q.add (Q.mul 1 1) (Q.mul 0 0)) …/… div # negates a complex number -negate &[[(R.negate 1) : (R.negate 0)]] ⧗ Complex → Complex +negate b &[[(Q.negate 1) : (Q.negate 0)]] ⧗ Complex → Complex -‣ negate # inverts a complex number -invert &[[p : q]] ⧗ Complex → Complex - p R.div 1 (R.add (R.mul 1 1) (R.mul 0 0)) - q R.div 0 (R.add (R.mul 1 1) (R.mul 0 0)) +invert b &[[p : q]] ⧗ Complex → Complex + p Q.div 1 (Q.add (Q.mul 1 1) (Q.mul 0 0)) + q Q.div 0 (Q.add (Q.mul 1 1) (Q.mul 0 0)) ~‣ invert @@ -76,6 +67,17 @@ invert &[[p : q]] ⧗ Complex → Complex # power function: complex^number pow-n [L.nth-iterate (mul 0) (+1.0+0.0i)] ⧗ Complex → Number → Complex -ln [p : q] ⧗ Complex → Complex - p R.ln (&R.hypot 0) - q &R.atan2 0 +exp [[L.nth-iterate &[[[[op]]]] start 0 [[[[1]]]] 0]] ⧗ Complex → Complex + start [0 (+1.0+0.0i) (+1.0+0.0i) (+1.0+0.0i) (+1)] + op [[[2 1 0 (4 + (1 / 0)) N.++3]] pow fac] + pow 6 ⋅ 4 + fac 3 ⋅ (number→complex 1) + +ln [[[p : q] (1 0)]] ⧗ Complex → Complex + p R.ln (&[[R.hypot [2] [1]]] 0) 1 + q &[[\R.atan2 [2] [1]]] 0 1 + +# complex power function: complex^complex +pow [[exp (0 ⋅ (ln 1))]] ⧗ Complex → Complex → Complex + +…**… pow |