aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/Helper.hs
blob: 8ea5600357a3091134a487779b69015d346c18d9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
-- MIT License, Copyright (c) 2022 Marvin Borner
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}

module Helper where

import           Control.DeepSeq                ( NFData )
import qualified Control.Monad.State           as S
import           Data.Array
import qualified Data.BitString                as Bit
import qualified Data.ByteString.Lazy          as Byte
import qualified Data.ByteString.Lazy.Char8    as C
import           Data.Char
import           Data.List
import qualified Data.Map                      as M
import           Data.Maybe                     ( fromMaybe
                                                , isNothing
                                                )
import           GHC.Generics                   ( Generic )
import           GHC.Real                       ( denominator
                                                , numerator
                                                )
import           Numeric                        ( showFFloatAlt )
import           Text.Megaparsec

invalidProgramState :: a
invalidProgramState = error "invalid program state"

data Context = Context
  { _ctxInput :: String
  , _ctxPath  :: String
  }

printContext :: Context -> String
printContext (Context inp ""  ) = printContext (Context inp "<unknown>")
printContext (Context inp path) = p $ lines inp
 where
  withinText = "\ESC[106m\ESC[30mwithin\ESC[0m "
  inText     = "\ESC[104m\ESC[30min\ESC[0m "
  nearText   = "\ESC[105m\ESC[30mnear\ESC[0m\n"
  p []  = withinText <> show path <> "\n"
  p [l] = inText <> l <> "\n" <> withinText <> path <> "\n"
  p (l : ls) =
    p [l] <> nearText <> intercalate "\n" (map ("  | " ++) $ take 3 ls) <> "\n"

errPrefix :: String
errPrefix = "\ESC[101m\ESC[30mERROR\ESC[0m "

okPrefix :: String
okPrefix = "\ESC[102m\ESC[30m OK \ESC[0m "

data Error = SyntaxError String | UndefinedIdentifier Identifier | UnmatchedMixfix [MixfixIdentifierKind] [Mixfix] | InvalidIndex Int | FailedTest Expression Expression Expression Expression | PassedTest Expression Expression | ContextualError Error Context | SuggestSolution Error String | ImportError String | OptimizerError String

instance Show Error where
  show (ContextualError err ctx) = show err <> "\n" <> printContext ctx
  show (SuggestSolution err sol) =
    show err <> "\n\ESC[102m\ESC[30msuggestion\ESC[0m Perhaps you meant " <> sol
  show (SyntaxError err) =
    errPrefix <> "invalid syntax\n\ESC[105m\ESC[30mnear\ESC[0m " <> err
  show (UndefinedIdentifier ident) =
    errPrefix <> "undefined identifier " <> show ident
  show (UnmatchedMixfix ks ms) =
    errPrefix
      <> "couldn't find matching mixfix for "
      <> intercalate "" (map show ks)
      <> "\n\ESC[105m\ESC[30mnear\ESC[0m "
      <> unwords (map show ms)
  show (InvalidIndex err) = errPrefix <> "invalid index " <> show err
  show (PassedTest exp1 exp2) =
    okPrefix <> "test passed: " <> show exp1 <> " = " <> show exp2
  show (FailedTest exp1 exp2 red1 red2) =
    errPrefix
      <> "test failed: "
      <> show exp1
      <> " = "
      <> show exp2
      <> "\n      reduced to "
      <> show red1
      <> " = "
      <> show red2
  show (ImportError    path) = errPrefix <> "invalid import " <> show path
  show (OptimizerError msg ) = errPrefix <> "optimizer failed: " <> msg

type Failable = Either Error

-- Modified from megaparsec's errorBundlePretty
printBundle
  :: forall s e
   . (VisualStream s, TraversableStream s, ShowErrorComponent e)
  => ParseErrorBundle s e
  -> String
printBundle ParseErrorBundle {..} =
  let (r, _) = foldl f (id, bundlePosState) bundleErrors in drop 1 (r "")
 where
  f :: (ShowS, PosState s) -> ParseError s e -> (ShowS, PosState s)
  f (o, !pst) e = (o . (outChunk ++), pst')
   where
    (msline, pst') = reachOffset (errorOffset e) pst
    epos           = pstateSourcePos pst'
    outChunk       = "\n\n" <> offendingLine <> init (parseErrorTextPretty e)
    offendingLine  = case msline of
      Nothing -> ""
      Just sline ->
        let pointer    = "^"
            rpadding   = replicate rpshift ' '
            rpshift    = unPos (sourceColumn epos) - 2
            lineNumber = (show . unPos . sourceLine) epos
            padding    = replicate (length lineNumber + 1) ' '
        in  padding
              <> "|\n"
              <> "  | "
              <> sline
              <> "\n"
              <> padding
              <> "|  "
              <> rpadding
              <> pointer
              <> "\n"

data MixfixIdentifierKind = MixfixSome String | MixfixNone
  deriving (Ord, Eq, Generic, NFData)

instance Show MixfixIdentifierKind where -- don't colorize (due to map)
  show (MixfixSome e) = e
  show _              = "…"

data Identifier = NormalFunction String | MixfixFunction [MixfixIdentifierKind] | PrefixFunction String | NamespacedFunction String Identifier
  deriving (Ord, Eq, Generic, NFData)

functionName :: Identifier -> String
functionName = \case
  NormalFunction f       -> f
  MixfixFunction is      -> intercalate "" $ map show is
  PrefixFunction p       -> p <> "‣"
  NamespacedFunction n f -> n <> functionName f

instance Show Identifier where
  show ident = "\ESC[95m" <> functionName ident <> "\ESC[0m"

data Mixfix = MixfixOperator Identifier | MixfixExpression Expression
  deriving (Ord, Eq, Generic, NFData)

instance Show Mixfix where
  show (MixfixOperator   i) = show i
  show (MixfixExpression e) = show e

-- TODO: Remove Application and replace with Chain (renaming of MixfixChain)
data Expression = Bruijn Int | Function Identifier | Abstraction Expression | Application Expression Expression | MixfixChain [Mixfix] | Prefix Identifier Expression | Quote Expression | Unquote Expression
  deriving (Ord, Eq, Generic, NFData)

instance Show Expression where
  showsPrec _ (Bruijn x) =
    showString "\ESC[91m" . shows x . showString "\ESC[0m"
  showsPrec _ (Function ident) =
    showString "\ESC[95m" . shows ident . showString "\ESC[0m"
  showsPrec _ (Abstraction e) =
    showString "\ESC[36m[\ESC[0m" . shows e . showString "\ESC[36m]\ESC[0m"
  showsPrec _ (Application exp1 exp2) =
    showString "\ESC[33m(\ESC[0m"
      . shows exp1
      . showString " "
      . shows exp2
      . showString "\ESC[33m)\ESC[0m"
  showsPrec _ (MixfixChain [m]) =
    showString "\ESC[33m\ESC[0m" . shows m . showString "\ESC[33m\ESC[0m"
  showsPrec _ (MixfixChain ms) =
    showString "\ESC[33m(\ESC[0m"
      . foldr1 (\x y -> x . showString " " . y) (map shows ms)
      . showString "\ESC[33m)\ESC[0m"
  showsPrec _ (Prefix p e) =
    showString "\ESC[33m(\ESC[0m"
      . shows p
      . showString " "
      . shows e
      . showString "\ESC[33m)\ESC[0m"
  showsPrec _ (Quote   e) = showString "\ESC[36m`\ESC[0m" . shows e
  showsPrec _ (Unquote e) = showString "\ESC[36m,\ESC[0m" . shows e

data Command = Input String | Watch String | Import String String | Test Expression Expression | ClearState | Time Expression | Length Expression | Blc Expression | Jot String
  deriving (Show)

data Instruction = Define Identifier Expression [Instruction] | Evaluate Expression | Comment | Commands [Command] | ContextualInstruction Instruction String
  deriving (Show)

data ArgMode = ArgEval | ArgEvalBblc | ArgEvalBlc | ArgDumpBblc | ArgDumpBlc

data Args = Args
  { _argMode     :: ArgMode
  , _argNoTests  :: Bool
  , _argVerbose  :: Bool
  , _argOptimize :: Bool
  , _argToTarget :: String
  , _argReducer  :: String
  , _argPath     :: Maybe String
  }

data EvalConf = EvalConf
  { _isRepl    :: Bool
  , _isVerbose :: Bool
  , _evalTests :: Bool
  , _optimize  :: Bool
  , _nicePath  :: String
  , _path      :: String
  , _evalPaths :: [String]
  , _toTarget  :: String
  , _reducer   :: String
  , _hasArg    :: Bool
  }

newtype ExpFlags = ExpFlags
  { _isImported :: Bool
  }
  deriving (Show)

data EnvDef = EnvDef
  { _exp   :: Expression
  , _sub   :: Environment
  , _flags :: ExpFlags
  }
  deriving Show

newtype Environment = Environment (M.Map Identifier EnvDef)
  deriving (Show)

newtype EnvCache = EnvCache
  { _imported :: M.Map String Environment
  }

type EvalState = S.State Environment

argsToConf :: Args -> EvalConf
argsToConf args = EvalConf { _isRepl    = isNothing $ _argPath args
                           , _isVerbose = _argVerbose args
                           , _evalTests = not $ _argNoTests args
                           , _optimize  = _argOptimize args
                           , _path      = path
                           , _nicePath  = path
                           , _evalPaths = []
                           , _toTarget  = _argToTarget args
                           , _reducer   = _argReducer args
                           , _hasArg    = False
                           }
  where path = fromMaybe "" (_argPath args)

defaultFlags :: ExpFlags
defaultFlags = ExpFlags { _isImported = False }

---

listify :: [Expression] -> Expression
listify [] = Abstraction (Abstraction (Bruijn 0))
listify (e : es) =
  Abstraction (Application (Application (Bruijn 0) e) (listify es))

binarify :: [Expression] -> Expression
binarify = foldr Application (Bruijn 2)

encodeByte :: [Bool] -> Expression
encodeByte bits = Abstraction $ Abstraction $ Abstraction $ binarify
  (map encodeBit bits)
 where
  encodeBit False = Bruijn 0
  encodeBit True  = Bruijn 1

-- TODO: There must be a better way to do this :D
encodeBytes :: Byte.ByteString -> Expression
encodeBytes bytes = listify $ map
  (encodeByte . Bit.toList . Bit.bitStringLazy . Byte.pack . (: []))
  (Byte.unpack bytes)

stringToExpression :: String -> Expression
stringToExpression = encodeBytes . C.pack

charToExpression :: Char -> Expression
charToExpression ch = encodeByte $ Bit.toList $ Bit.bitStringLazy $ C.pack [ch]

encodeStdin :: IO Expression
encodeStdin = encodeBytes <$> Byte.getContents

unlistify :: Expression -> Maybe [Expression]
unlistify (Abstraction (Abstraction (Bruijn 0))) = Just []
unlistify (Abstraction (Application (Application (Bruijn 0) e) es)) =
  (:) <$> Just e <*> unlistify es
unlistify _ = Nothing

unpairify :: Expression -> Maybe [Expression]
unpairify (Abstraction (Application (Application (Bruijn 0) e1) e2)) =
  Just (e1 : [e2])
unpairify _ = Nothing

decodeByte :: Expression -> Maybe [Bool]
decodeByte (Abstraction (Abstraction (Abstraction es))) = decodeByte es
decodeByte (Application (Bruijn 0) es) = (:) <$> Just False <*> decodeByte es
decodeByte (Application (Bruijn 1) es) = (:) <$> Just True <*> decodeByte es
decodeByte (Bruijn 2                 ) = Just []
decodeByte _                           = Nothing

decodeStdout :: Expression -> Maybe String
decodeStdout e = do
  u <- unlistify e
  pure $ C.unpack $ Byte.concat $ map
    (\m -> case decodeByte m of
      Just b  -> Bit.realizeBitStringLazy $ Bit.fromList b
      Nothing -> Byte.empty
    )
    u

---

-- from reddit u/cgibbard
levenshtein :: (Eq a) => [a] -> [a] -> Int
levenshtein xs ys = levMemo ! (n, m)
 where
  levMemo =
    array ((0, 0), (n, m)) [ ((i, j), lev i j) | i <- [0 .. n], j <- [0 .. m] ]
  n  = length xs
  m  = length ys
  xa = listArray (1, n) xs
  ya = listArray (1, m) ys
  lev 0 v = v
  lev u 0 = u
  lev u v
    | xa ! u == ya ! v = levMemo ! (u - 1, v - 1)
    | otherwise = 1 + minimum
      [levMemo ! (u, v - 1), levMemo ! (u - 1, v), levMemo ! (u - 1, v - 1)]

---

-- TODO: Performanize
matchingFunctions :: Expression -> Environment -> String
matchingFunctions e (Environment env) =
  intercalate ", " $ map (functionName . fst) $ M.toList $ M.filter
    (\EnvDef { _exp = e' } -> e == e')
    env

-- TODO: Show binary as char if in ascii range (=> + humanify strings)
-- TODO: Show list as pair if not ending with empty
maybeHumanifyExpression :: Expression -> Maybe String
maybeHumanifyExpression e =
  unaryToDecimal e
    <|> binaryToChar e
    <|> binaryToString e
    <|> ternaryToString e
    <|> rationalToFloat e
    <|> humanifyString e
    <|> humanifyList e
    <|> humanifyPair e
    <|> humanifyMeta e

humanifyExpression :: Expression -> String
humanifyExpression e = fromMaybe "" (maybeHumanifyExpression e)

humanifyMeta :: Expression -> Maybe String
humanifyMeta e = ("`" <>) <$> go e
 where
  go (Abstraction (Abstraction (Abstraction (Application (Bruijn 0) t)))) =
    go t >>= (\a -> pure $ "[" <> a <> "]")
  go (Abstraction (Abstraction (Abstraction (Application (Application (Bruijn 1) a) b))))
    = go a >>= \l -> go b >>= \r -> pure $ "(" <> l <> " " <> r <> ")"
  go (Abstraction (Abstraction (Abstraction (Application (Bruijn 2) n)))) =
    fmap show (unaryToDecimal' n)
  go _ = Nothing

humanifyList :: Expression -> Maybe String
humanifyList e = do
  es <- unlistify e
  let conv x = fromMaybe (show x) (maybeHumanifyExpression x)
      m = map conv es
  pure $ "{" <> intercalate ", " m <> "}"

humanifyString :: Expression -> Maybe String
humanifyString e = do
  es  <- unlistify e
  str <- mapM binaryToChar' es
  pure $ "\"" <> str <> "\""

humanifyPair :: Expression -> Maybe String
humanifyPair e = do
  es <- unpairify e
  let conv x = fromMaybe (show x) (maybeHumanifyExpression x)
      m = map conv es
  pure $ "<" <> intercalate " : " m <> ">"

---

floatToRational :: Rational -> Expression
floatToRational f = Abstraction
  (Application (Application (Bruijn 0) (decimalToTernary p))
               (decimalToTernary $ q - 1)
  )
 where
  p = numerator f
  q = denominator f

floatToReal :: Rational -> Expression
floatToReal = Abstraction . floatToRational

floatToComplex :: Rational -> Expression
floatToComplex f = Bruijn 0

-- Dec to Bal3 in Bruijn encoding: reversed application with 0=>0; 1=>1; T=>2; end=>3
-- e.g. 0=0=[[[[3]]]]; 2=1T=[[[[2 (1 3)]]]] -5=T11=[[[[1 (1 (2 3))]]]]
decimalToTernary :: Integer -> Expression
decimalToTernary n =
  Abstraction $ Abstraction $ Abstraction $ Abstraction $ gen n
 where
  gen 0 = Bruijn 3
  gen n' =
    Application (Bruijn $ fromIntegral $ mod n' 3) (gen $ div (n' + 1) 3)

-- Decimal to binary encoding
decimalToBinary :: Integer -> Expression
decimalToBinary n | n < 0     = decimalToBinary 0
                  | otherwise = Abstraction $ Abstraction $ Abstraction $ gen n
 where
  gen 0  = Bruijn 2
  gen n' = Application (Bruijn $ fromIntegral $ mod n' 2) (gen $ div n' 2)

-- Decimal to unary (church) encoding
decimalToUnary :: Integer -> Expression
decimalToUnary n | n < 0     = decimalToUnary 0
                 | otherwise = Abstraction $ Abstraction $ gen n
 where
  gen 0  = Bruijn 0
  gen n' = Application (Bruijn 1) (gen (n' - 1))

-- Decimal to de Bruijn encoding
decimalToDeBruijn :: Integer -> Expression
decimalToDeBruijn n | n < 0     = decimalToDeBruijn 0
                    | otherwise = gen n
 where
  gen 0  = Abstraction $ Bruijn $ fromInteger n
  gen n' = Abstraction $ gen (n' - 1)

unaryToDecimal :: Expression -> Maybe String
unaryToDecimal e = (<> "u") . show <$> unaryToDecimal' e

unaryToDecimal' :: Expression -> Maybe Integer
unaryToDecimal' e = do
  res <- resolve e
  return (sum res :: Integer)
 where
  multiplier (Bruijn 1) = Just 1
  multiplier _          = Nothing
  resolve' (Bruijn 0) = Just []
  resolve' (Application x@(Bruijn _) (Bruijn 0)) =
    (:) <$> multiplier x <*> Just []
  resolve' (Application x@(Bruijn _) xs@(Application _ _)) =
    (:) <$> multiplier x <*> resolve' xs
  resolve' _ = Nothing
  resolve (Abstraction (Abstraction n)) = resolve' n
  resolve _                             = Nothing

binaryToChar :: Expression -> Maybe String
binaryToChar e = show <$> binaryToChar' e

binaryToChar' :: Expression -> Maybe Char
binaryToChar' e = do
  n <- binaryToDecimal e
  if n > 31 && n < 127 || n == 10 then Just $ chr $ fromIntegral n else Nothing

binaryToString :: Expression -> Maybe String
binaryToString e = (<> "b") . show <$> binaryToDecimal e

binaryToDecimal :: Expression -> Maybe Integer
binaryToDecimal e = do
  res <- resolve e
  return (sum $ zipWith (*) res (iterate (* 2) 1) :: Integer)
 where
  multiplier (Bruijn 0) = Just 0
  multiplier (Bruijn 1) = Just 1
  multiplier _          = Nothing
  resolve' (Bruijn 2) = Just []
  resolve' (Application x@(Bruijn _) (Bruijn 2)) =
    (:) <$> multiplier x <*> Just []
  resolve' (Application x@(Bruijn _) xs@(Application _ _)) =
    (:) <$> multiplier x <*> resolve' xs
  resolve' _ = Nothing
  resolve (Abstraction (Abstraction (Abstraction n))) = resolve' n
  resolve _ = Nothing

ternaryToString :: Expression -> Maybe String
ternaryToString e = (<> "t") . show <$> ternaryToDecimal e

ternaryToDecimal :: Expression -> Maybe Integer
ternaryToDecimal e = do
  res <- resolve e
  return $ (sum $ zipWith (*) res (iterate (* 3) 1) :: Integer)
 where
  multiplier (Bruijn 0) = Just 0
  multiplier (Bruijn 1) = Just 1
  multiplier (Bruijn 2) = Just (-1)
  multiplier _          = Nothing
  resolve' (Bruijn 3) = Just []
  resolve' (Application x@(Bruijn _) (Bruijn 3)) =
    (:) <$> multiplier x <*> Just []
  resolve' (Application x@(Bruijn _) xs@(Application _ _)) =
    (:) <$> multiplier x <*> resolve' xs
  resolve' _ = Nothing
  resolve (Abstraction (Abstraction (Abstraction (Abstraction n)))) =
    resolve' n
  resolve _ = Nothing

rationalToFloat :: Expression -> Maybe String
rationalToFloat (Abstraction (Application (Application (Bruijn 0) a) b)) = do
  n <- ternaryToDecimal a
  d <- ternaryToDecimal b
  -- let (h, r) = properFraction (n % (d + 1))
  Just
    $  show n
    <> "/"
    <> show (d + 1)
    <> " (approx. "
    <> (showFFloatAlt (Just 8)
                      ((fromIntegral n) / (fromIntegral $ d + 1) :: Double)
                      ""
       )
    <> ")"
rationalToFloat _ = Nothing