aboutsummaryrefslogtreecommitdiffhomepage
path: root/std/Combinator.bruijn
blob: 8efc5347c1511c14a4d23125a365e4b4f513f662 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# MIT License, Copyright (c) 2022 Marvin Borner
# Inspired by Raymond Smullyan: To Mock a Mockingbird
# → bird monickered combinators (they're still quite useful though!)

# bluebird combinator: function composition: (f ∘ g) x = f (g x)
b [[[2 (1 0)]]] ⧗ (b → c) → (a → b) → a → c

…∘… b

# blackbird combinator: 2x function composition: (f ∘∘ g) x y = f (g x y)
b' [[[[3 (2 1 0)]]]] ⧗ (c → d) → (a → b → c) → a → b → d

…∘∘… b'

# bunting combinator: 3x function composition: (f ∘∘∘ g) x y z = f (g x y z)
b'' [[[[[4 (3 2 1 0)]]]]] ⧗ (d → e) → (a → b → c → d) → a → b → c → e

…∘∘∘… b''

# becard combinator
b''' [[[[3 (2 (1 0))]]]] ⧗ (c → d) → (b → c) → (a → b) → a → d

# cardinal combinator: flip arguments: \f x y = f y x
c [[[2 0 1]]] ⧗ (a → b → c) → b → a → c

\‣ c

# cardinal once removed combinator
c* [[[[3 2 0 1]]]] ⧗ (a → c → b → d) → a → b → c → d

# cardinal twice removed combinator
c** [[[[[4 3 2 0 1]]]]] ⧗ (a → b → d → c → e) → a → b → c → d → e

# dove combinator
d [[[[3 2 (1 0)]]]] ⧗ a → (b → c) → b → d

# dickcissel combinator
d' [[[[[4 3 2 (1 0)]]]]] ⧗ (a → b → d → e) → a → b → (c → d) → c → e

# dovekies combinator
d'' [[[[[4 (3 2) (1 0)]]]]] ⧗ (c → d → e) → (a → c) → a → (b → d) → b → e

# eagle combinator
e [[[[[4 3 (2 1 0)]]]]] ⧗ (a → d → e) → a → (b → c → d) → b → c → e

# bald eagle combinator
e' [[[[[[[6 (5 4 3) (2 1 0)]]]]]]] ⧗ (e → f → g) → (a → b → e) → a → b → (c → d → f) → c → d → g

# finch combinator
f [[[0 1 2]]] ⧗ a → b → (b → a → c) → c

# finch once removed combinator
f* [[[[3 0 1 2]]]] ⧗ (c → b → a → d) → a → b → c → d

# finch twice removed combinator
f** [[[[[4 3 0 1 2]]]]] ⧗ (a → d → c → b → e) → a → b → c → d → e

# goldfinch combinator
g [[[[3 0 (2 1)]]]] ⧗ (b → c → d) → (a → c) → a → b → d

# hummingbird combinator
h [[[2 1 0 1]]] ⧗ (a → b → a → c) → a → b → c

# idiot combinator: identity
# aside from obvious usage it's also used as abstraction crusher
# to indicate that an argument isn't used
i [0] ⧗ a → a

# idiot once removed combinator: apply, $
i* [[1 0]] ⧗ (a → b) → a → b

…$… i*

# idiot twice removed combinator
i** [[[2 1 0]]] ⧗ (a → b → c) → a → b → c

# jay combinator
j [[[[3 2 (3 0 1)]]]] ⧗ (a → b → b) → a → b → a → b

# kestrel combinator: const, true
k [[1]] ⧗ a → b → a

const k

# kite combinator: const id, false
ki [[0]] ⧗ a → b → b

# konstant mocker combinator
km [[0 0]]

# crossed konstant mocker combinator
km' [[1 1]]

# lark combinator
l [[1 (0 0)]]

# mockingbird/omega combinator
m [0 0] ⧗ (a → b) → b

ω m

# double mockingbird combinator
m' [[1 0 (1 0)]]

# owl combinator
o [[0 (1 0)]] ⧗ ((a → b) → a) → (a → b) → b

# omega combinator
Ω ω ω

# phoenix combinator: liftM2
# alternative name: starling prime: s'
φ [[[[3 (2 0) (1 0)]]]] ⧗ (b → c → d) → (a → b) → (a → c) → a → d

# psi combinator: on
ψ [[[[3 (2 1) (2 0)]]]] ⧗ (b → b → c) → (a → b) → a → a → c

ψ* [[[[[4 3 (2 1) (2 0)]]]]] ⧗ (c → b → b → d) → c → (a → b) → a → a → d

# queer bird combinator: reverse function composition: (f , g) x = g (f x)
q [[[1 (2 0)]]] ⧗ (a → b) → (b → c) → a → c

# quixotic bird combinator
q' [[[2 (0 1)]]] ⧗ (b → c) → a → (a → b) → c

# quizzical bird combinator
q'' [[[1 (0 2)]]] ⧗ a → (b → c) → (a → b) → c

# quirky bird combinator
q''' [[[0 (2 1)]]] ⧗ (a → b) → a → (b → c) → c

# quacky bird combinator
q'''' [[[0 (1 2)]]] ⧗ a → (a → b) → (b → c) → c

# robin combinator
r [[[1 0 2]]] ⧗ a → (b → a → c) → b → c

# robin once removed combinator
r* [[[[3 1 0 2]]]] ⧗ (b → c → a → d) → a → b → c → d

# robin twice removed combinator
r** [[[[[4 3 1 0 2]]]]] ⧗ (a → c → d → b → e) → a → b → c → d → e

# starling combinator: (f <*> g) x = f x (g x)
s [[[2 0 (1 0)]]] ⧗ (a → b → c) → (a → b) → a → c

…<*>… s

# thrush combinator: flipped $
t [[0 1]] ⧗ a → (a → b) → b

…&… t

# turing combinator
u [[0 (1 1 0)]]

# vireo combinator
v [[[0 2 1]]] ⧗ a → b → (a → b → c) → c

# vireo once removed combinator
v* [[[[3 0 2 1]]]] ⧗ (b → a → b → d) → a → b → b → d

# vireo twice removed combinator
v** [[[[[4 3 0 2 1]]]]] ⧗ (a → c → b → c → e) → a → b → c → c → e

# warbler combinator
w [[1 0 0]] ⧗ (a → a → b) → a → b

# warbler once removed combinator
w* [[[2 1 0 0]]] ⧗ (a → b → b → c) → a → b → c

# warbler twice removed combinator
w** [[[[3 2 1 0 0]]]] ⧗ (a → b → c → c → d) → a → b → c → d

# converse warbler combinator
w' [[0 1 1]] ⧗ a → (a → a → b) → b

# sage bird combinator
y [[1 (0 0)] [1 (0 0)]] ⧗ (a → a) → a

# z fixed point combinator
# y and z are almost always interchangeable
z [[1 [1 1 0]] [1 [1 1 0]]] ⧗ (a → a) → a

# theta combinator
θ [[0 (1 1 0)]] [[0 (1 1 0)]]

# iota combinator
ι [0 s k]

# -- combinator equivalency tests --

:test (b) (s (k s) k)
:test (b') (b b b)
:test (b'') (b (b b b) b)
:test (b''') (b (b b) b)
:test (c) (s (b b s) (k k))
:test (c*) (b c)
:test (c**) (b c*)
:test (d) (b b)
:test (d') (b (b b))
:test (d'') (b b (b b))
:test (e) (b (b b b))
:test (e') (b (b b b) (b (b b b)))
:test (f) (e t t e t)
:test (f*) (b c* r*)
:test (f**) (b f*)
:test (g) (b b c)
:test (h) (b w (b c))
:test (i) (s k k)
:test (i*) (s (s k))
:test (j) (b (b c) (w (b c e)))
:test (ki) (k i)
:test (l) (c b m)
:test (m) (s i i)
:test (m') (b m)
:test (o) (s i)
:test (q) (c b)
:test (q') (b c b)
:test (q'') (c (b c b))
:test (q''') (b t)
:test (q'''') (f* b)
:test (r) (b b t)
:test (r*) (c* c*)
:test (r**) (b r*)
:test (t) (c i)
:test (u) (l o)
:test (v) (b c t)
:test (v*) (c* f*)
:test (v**) (b v*)
:test (w) (c (b m r))
:test (w*) (b w)
:test (w**) (b (b w))
:test (w') (c w)

# -- iota and SKI tests --

:test (i) (ι ι)
:test (k) (ι (ι (ι ι)))
:test (s) (ι (ι (ι (ι ι))))
:test (c) (s (s (k (s (k s) k)) s) (k k))
:test (w) (s s (s k))