aboutsummaryrefslogtreecommitdiffhomepage
path: root/std/Math/Complex.bruijn
blob: a20717fb20f410a73682a3a884d046013a58120a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# ideas by u/DaVinci103
# MIT License, Copyright (c) 2024 Marvin Borner

:import std/Combinator .
:import std/Pair .
:import std/Math/Real R

ι (+0.0r) : (+1.0r)

# returns true of two complex numbers are equal approximately
approx-eq? [[[R.approx-eq? 2 (1 2) (0 2)]]] ⧗ Number → Complex → Complex → Boolean

# TODO: bigger value (higher performance first!)
…≈?… approx-eq? (+1000)

# adds two complex numbers
add &[[&[[(R.add 3 1) : (R.add 2 0)]]]] ⧗ Complex → Complex → Complex

…+… add

# subtracts two complex numbers
sub &[[&[[(R.sub 3 1) : (R.sub 2 0)]]]] ⧗ Complex → Complex → Complex

…+… sub

# multiplies two complex numbers
mul &[[&[[p : q]]]] ⧗ Complex → Complex → Complex
	p R.sub (R.mul 3 1) (R.mul 2 0)
	q R.add (R.mul 3 0) (R.mul 2 1)

…⋅… mul

# divides two complex numbers
div &[[&[[p : q]]]] ⧗ Complex → Complex → Complex
	p R.div (R.add (R.mul 3 1) (R.mul 2 0)) (R.add (R.mul 1 1) (R.mul 0 0))
	q R.div (R.sub (R.mul 2 1) (R.mul 1 0)) (R.add (R.mul 1 1) (R.mul 0 0))

…/… div

# negates a complex number
negate &[[(R.negate 1) : (R.negate 0)]] ⧗ Complex → Complex

-‣ negate

# inverts a complex number
invert &[[p : q]] ⧗ Complex → Complex
	p R.div 1 (R.add (R.mul 1 1) (R.mul 0 0))
	q R.div 0 (R.add (R.mul 1 1) (R.mul 0 0))

~‣ invert