blob: 3b7f461c5a1472c497ac1b5de4c9001e045c53ba (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
# ideas by u/DaVinci103
# MIT License, Copyright (c) 2024 Marvin Borner
# (p : q) ⇔ (p / (q + 1))
:import std/Logic .
:import std/Combinator .
:import std/Pair .
:import std/Math N
# converts a balanced ternary number to a rational number
number→rational [0 : (+0)] ⧗ Number → Rational
:test (number→rational (+5)) ((+5.0))
# returns true if two rational numbers are equal
eq? &[[&[[N.eq? (N.mul 3 N.++0) (N.mul N.++2 1)]]]] ⧗ Rational → Rational → Boolean
…=?… eq?
:test (((+1) : (+3)) =? ((+2) : (+7))) (true)
:test ((+0.5) =? (+0.5)) (true)
:test ((+42.0) =? (+42.0)) (true)
:test ((+0.4) =? (+0.5)) (false)
# returns true if a rational number is greater than another
gt? &[[&[[N.gt? (N.mul 3 N.++0) (N.mul N.++2 1)]]]] ⧗ Rational → Rational → Boolean
…>?… gt?
# returns true if a rational number is less than another
lt? &[[&[[N.lt? (N.mul 3 N.++0) (N.mul N.++2 1)]]]] ⧗ Rational → Rational → Boolean
…<?… lt?
# returns true if a rational number is positive
positive? \gt? (+0.0) ⧗ Rational → Boolean
>?‣ positive?
# returns true if a real number is negative
negative? \lt? (+0.0) ⧗ Rational → Boolean
<?‣ negative?
# returns true if a rational number is zero
zero? &[[N.=?1]] ⧗ Rational → Boolean
=?‣ zero?
# negates a rational number if <0
abs &[[N.|1 : N.|0]] ⧗ Rational → Rational
|‣ abs
# finds smallest equivalent representation of a rational number
compress &[[[(N.div 2 0) : N.--(N.div N.++1 0)] (N.gcd 1 N.++0)]] ⧗ Rational → Rational
%‣ compress
:test (%((+4) : (+1)) =? (+2.0)) (true)
:test (%((+4) : (+7)) =? (+0.5)) (true)
# adds two rational numbers
add &[[&[[p : q]]]] ⧗ Rational → Rational → Rational
p N.add (N.mul 3 N.++0) (N.mul N.++2 1)
q N.add (N.mul 2 0) (N.add 2 0)
…+… add
:test ((+0.5) + (+0.5) =? (+1.0)) (true)
:test ((+1.8) + (+1.2) =? (+3.0)) (true)
:test ((-1.8) + (+1.2) =? (-0.6)) (true)
reduce [[[(N.div 2 0) : N.--(N.div 1 0)] (N.gcd 1 0)]] ⧗ Number → Number → Rational
add' &[[&[[reduce p q]]]]
p N.add (N.mul 3 N.++0) (N.mul N.++2 1)
q N.mul N.++0 N.++2
# subtracts two rational numbers
sub &[[&[[p : q]]]] ⧗ Rational → Rational → Rational
p N.sub (N.mul 3 N.++0) (N.mul N.++2 1)
q N.add (N.mul 2 0) (N.add 2 0)
…-… sub
:test ((+0.5) - (+0.5) =? (+0.0)) (true)
:test ((+3.0) - (+1.8) =? (+1.2)) (true)
:test ((+1.8) - (-1.2) =? (+3.0)) (true)
# negates a rational number
negate &[[N.-1 : 0]] ⧗ Rational → Rational
-‣ negate
:test (-(+0.0) =? (+0.0)) (true)
:test (-(+4.2) =? (-4.2)) (true)
:test (-(-4.2) =? (+4.2)) (true)
# multiplies two rational numbers
mul &[[&[[p : q]]]] ⧗ Rational → Rational → Rational
p N.mul 3 1
q N.add (N.mul 2 0) (N.add 2 0)
…⋅… mul
:test ((+5.0) ⋅ (+5.0) =? (+25.0)) (true)
:test ((+1.8) ⋅ (+1.2) =? (+2.16)) (true)
# finds the multiplicative inverse of a rational number
invert &[[N.compare-case eq gt lt 1 (+0)]] ⧗ Rational → Rational
eq Ω
gt N.++0 : N.--1
lt N.-(N.++0) : N.--(N.-1)
~‣ invert
:test (~(+0.5) =? (+2.0)) (true)
:test (~(-0.5) =? (-2.0)) (true)
# divides two rational numbers
div [[1 ⋅ ~0]] ⧗ Rational → Rational → Rational
…/… div
:test ((+8.0) / (+4.0) =? (+2.0)) (true)
:test ((+18.0) / (+12.0) =? (+1.5)) (true)
# increments a rational number
inc add (+1.0) ⧗ Rational → Rational
++‣ inc
# decrements a rational number
dec \sub (+1.0) ⧗ Rational → Rational
--‣ dec
# approximates a rational number to n digits
approximate &[[[&[[int : float]] (N.quot-rem 2 N.++1)]]] ⧗ Rational → Number → (List Number)
int 1
float N.number→list (N.div (N.mul 0 (N.pow (+10) 2)) N.++3)
# TODO: Regression? Importing this into . won't find Q.eq? anymore
:import std/List L
# power function: rational^number
pow-n [L.nth-iterate (mul 0) (+1.0)] ⧗ Rational → Number → Rational
|